A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A Metabolic Labeling Strategy for Relative Protein Quantification in . | LitMetric

A Metabolic Labeling Strategy for Relative Protein Quantification in .

Front Microbiol

Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany.

Published: October 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

(formerly ) is a Gram-positive, anaerobe, spore-forming pathogen, which causes drug-induced diseases in hospitals worldwide. A detailed analysis of the proteome may provide new targets for drug development or therapeutic strategies to combat this pathogen. The application of metabolic labeling (ML) would allow for accurate quantification of significant differences in protein abundance, even in the case of very small changes. Additionally, it would be possible to perform more accurate studies of the membrane or surface proteomes, which usually require elaborated sample preparation. Such studies are therefore prone to higher standard deviations during the quantification. The implementation of ML strategies for is complicated due to the lack in arginine and lysine auxotrophy as well as the Stickland dominated metabolism of this anaerobic pathogen. Hence, quantitative proteome analyses could only be carried out by label free or chemical labeling methods so far. In this paper, a ML approach for is described. A cultivation procedure with N-labeled media for strain 630Δ was established achieving an incorporation rate higher than 97%. In a proof-of-principle experiment, the performance of the ML approach in was tested. The proteome data of the cytosolic subproteome of cells grown in complex medium as well as two minimal media in the late exponential and early stationary growth phase obtained via ML were compared with two label free relative quantification approaches (NSAF and LFQ). The numbers of identified proteins were comparable within the three approaches, whereas the number of quantified proteins were between 1,110 (ML) and 1,861 (LFQ) proteins. A hierarchical clustering showed clearly separated clusters for the different conditions and a small tree height with ML approach. Furthermore, it was shown that the quantification based on ML revealed significant altered proteins with small fold changes compared to the label free approaches. The quantification based on ML was accurate, reproducible, and even more sensitive compared to label free quantification strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198727PMC
http://dx.doi.org/10.3389/fmicb.2018.02371DOI Listing

Publication Analysis

Top Keywords

label free
16
compared label
12
metabolic labeling
8
quantification based
8
quantification
7
labeling strategy
4
strategy relative
4
relative protein
4
protein quantification
4
quantification gram-positive
4

Similar Publications