Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A cavity-enhanced Thomson scattering (CETS) diagnostic has been developed to perform electron density and temperature measurements in low-density weakly ionized discharges. The diagnostic approach is based on generating a high-power beam in an optical build-up cavity and using the beam as a light source for Thomson scattering from plasma housed within the cavity. In our setup, a high-power (∼5 W) fiber laser at 1064 nm allows an intra-cavity power of 11.7 kW in a two-mirror cavity for measurements in the plume of a BaO hollow cathode discharge. A study of plasma density and temperature was performed at various operating conditions. Electron densities and temperatures in the range of ∼10 cm and ∼3 eV were measured, respectively. The high signal-to-noise ratio (SNR) of the present measurements (SNR=1100) suggests the ability to measure significantly lower density plasmas in the range of ∼3×10 to 3×10 cm, thereby extending current laser Thomson scattering diagnostic capabilities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.43.005343 | DOI Listing |