Comparison of modeling with empirical calculation of diffuse and fugitive methane emissions in a Spanish landfill.

J Air Waste Manag Assoc

a Department of Chemical and Environmental Engineering , Universidad Politécnica de Madrid , Madrid , Spain.

Published: March 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

One of the most significant environmental problems arising from landfills is the emission of methane into the atmosphere. In this study, methane emissions from a currently in-use Spanish landfill were modeled as well as being experimentally measured using a two-step method. The first step involved a qualitative walkover survey to detect where gases were being emitted on the surface of the landfill. The second stage comprised a quantitative analysis of these surface methane emissions at a selected number of points on the landfill surface using a specially designed flux chamber. The statistical analysis of the data obtained was based on the Sichel function and resulted in an average emission rate of 74.9 g·m·day, with 27.8 and 202.1 g·m·day as the lower and upper limits of the 95% confidence interval, respectively. The total emission for the landfill, with an emitting surface of 335,000 m, is 9.16 × 10 ton/yr. These values have been compared with those from three different models, with the model results being above the calculated mean emissions measured at the landfill, but below the upper confidence limit at 95%. Implications: One of the main environmental problems arising from the presence of landfills is the emission of biogas (which mainly contains methane and carbon dioxide) into the atmosphere. Several experimental methods as well as models have been developed to quantify these emissions. In this work, the authors have compared the results obtained using experimental measurements with those provided by some local and international models using the default parameters proposed. The results obtained from the experimental method are in accordance with those provided by the models, although the models could be slightly overestimating these emissions.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10962247.2018.1541029DOI Listing

Publication Analysis

Top Keywords

methane emissions
12
spanish landfill
8
environmental problems
8
problems arising
8
landfills emission
8
emissions
6
landfill
6
methane
5
models
5
comparison modeling
4

Similar Publications

A respirometry system designed for small ruminants.

JDS Commun

September 2025

Brazilian Agricultural Research Corporation, Juiz de Fora, Minas Gerais, Brazil, 36038-330.

This technical note describes a small ruminant respiration chamber system designed to accurately quantify the production of carbon dioxide (CO) and methane (CH). The system consists of 3 open-circuit respiration chambers, flow meters, gas analyzers, and an accessible environmental control system. To validate its performance, gas recovery tests were conducted by injecting CO and CH at 4 constant flow rates: 0.

View Article and Find Full Text PDF

Is methane emission genetically the same trait in young bulls and lactating dairy cows?

JDS Commun

September 2025

Geno Breeding and AI Association, 2317 Hamar, Norway.

It is of interest to examine whether methane (CH) emission is genetically the same trait in young bulls and lactating dairy cows. The aim was therefore to estimate the genetic correlation between CH emissions for Norwegian Red young bulls and lactating cows. Measures of CH from GreenFeed (GF) were available from Geno's test station for young bulls and from GF units installed across 14 commercial dairy herds.

View Article and Find Full Text PDF

Rice Root Iron Plaque as a Mediator to Stimulate Methanotrophic Nitrogen Fixation.

Environ Sci Technol

September 2025

Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Iron plaque (IP) on rice root surfaces has been extensively documented as a natural barrier that effectively reduces contaminant bioavailability and accumulation. However, its regulatory mechanisms in rhizospheric methane oxidation and biological nitrogen fixation (BNF) remain elusive. This study reveals a previously unrecognized function of IP: mediating methanotrophic nitrogen fixation through coupled aerobic methane oxidation and IP reduction (Fe-MOX).

View Article and Find Full Text PDF

We measured emissions from ten landfills using mobile surveys and Surface Emission Monitoring (SEM) to determine what fraction of emissions can be identified by SEM surveys. SEM is commonly used for regulatory compliance and leak detection at specific locations. However, evolving regulations emphasize the need to manage methane emissions from the entire landfill site, and the suitability of SEM for this objective remains unclear.

View Article and Find Full Text PDF

Wetlands play a crucial role in global greenhouse gas (GHG) dynamics, yet their response to climate change is not yet fully understood. Here, we investigate how increasing temperature and oxygen availability interact to regulate wetland GHG emissions through combined analysis of biogeochemical and functional gene measurements. We found distinct temperature-dependent shifts in carbon emission pathways, with CO emissions unexpectedly declining as temperature rose from 15 to 25 °C, while increasing consistently at higher temperatures (25-35 °C), reflecting a transition to more thermally-driven processes.

View Article and Find Full Text PDF