A versatile image analysis platform for three-dimensional nuclear reconstruction.

Methods

Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA. Electronic address:

Published: March 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nuclear morphology is indicative of cellular health in many contexts. In order to robustly and quantitatively measure nuclear size and shape, numerous experimental methods leveraging fluorescence microscopy have been developed. While these methods are useful for quantifying two-dimensional morphology, they often fail to accurately represent the three-dimensional structure of the nucleus, thus omitting important spatial and volumetric information. To address the need for a more accurate image analysis modality, we have developed a software platform that faithfully reconstructs membrane surfaces in three dimensions with sub-pixel resolution. Here, we showcase its broad applicability across species and nuclear scale, as well as provide information on how to employ this platform for diverse experimental systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401273PMC
http://dx.doi.org/10.1016/j.ymeth.2018.10.009DOI Listing

Publication Analysis

Top Keywords

image analysis
8
versatile image
4
analysis platform
4
platform three-dimensional
4
nuclear
4
three-dimensional nuclear
4
nuclear reconstruction
4
reconstruction nuclear
4
nuclear morphology
4
morphology indicative
4

Similar Publications

Background And Purpose: To review the existing evidence on multiple timepoint assessments of optic nerve sheath diameter (ONSD) as an indicator of intraindividual variation of intracranial pressure (ICP).

Methods: A systematic search identified studies assessing intraindividual variation in ICP through multiple timepoint measurements of ONSD using ultrasonography. Meta-analysis of studies assessing intraindividual correlation coefficients between ONSD and ICP was performed using a random effects model, and we calculated the weighted correlation coefficient for the expected change in ICP associated with variations in ONSD.

View Article and Find Full Text PDF

Background: Virtual reality (VR) and artificial intelligence (AI) technologies have advanced significantly over the past few decades, expanding into various fields, including dental education.

Purpose: To comprehensively review the application of VR and AI technologies in dentistry training, focusing on their impact on cognitive load management and skill enhancement. This study systematically summarizes the existing literature by means of a scoping review to explore the effects of the application of these technologies and to explore future directions.

View Article and Find Full Text PDF

Background And Purpose: Socioeconomic determinants of health impact childhood development and adult health outcomes. One key aspect is the physical environment and neighborhood where children live and grow. Emerging evidence suggests that neighborhood deprivation, often measured by the Area Deprivation Index (ADI), may influence neurodevelopment, but longitudinal and multimodal neuroimaging analyses remain limited.

View Article and Find Full Text PDF

Evidence for cognitive compensation mechanism in the postoperative delirium: a prospective multi-modal neuroimaging cohort study.

Brain Imaging Behav

September 2025

Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, South 4th Ring West Road 119, Fengtai District, Beijing, 100070, China.

To explore the effect of brain cognitive compensation on the pathogenesis of postoperative delirium (POD) in the frontal glioma patients. Eighty-four adult patients with unilateral frontal glioma who underwent elective craniotomy and 37 healthy controls were recruited. Primary outcomes were POD during postoperative 1-7 days, as assessed by Confusion Assessment Method.

View Article and Find Full Text PDF

Herein, ruthenium nanoparticles (RuNPs) were synthesized using Tridax procumbens leaf extract as a reducing and stabilizing agent. The synthesis was optimized by adjusting temperature, leaf extract concentration, and reaction time. The synthesized RuNPs were characterized using UV-visible, XRD, EDAX, FTIR spectroscopy, SEM, and TEM, revealing uniform size and morphology.

View Article and Find Full Text PDF