Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We explore the relaxation behavior of model colloidal gels under steady shear flow by means of orthogonal superposition rheometry. Fumed silica and carbon black dispersions in Newtonian matrices are used as a model system. As shear rate increases, the frequency dependent orthogonal moduli of the gels shift along the frequency axis without changing their shape, which finally can be superimposed to yield a single master curve. This indicates that the shear rate tunes a master clock for overall relaxation modes in the sheared colloidal gels to produce a "time-shear rate superposition (TSS)", as temperature does in polymeric liquids to produce a time-temperature superposition (TTS). The horizontal shift factor required at each shear rate to obtain the master curve is found to be directly proportional to the suspension viscosity for all the cases. From this result, we suggest that the suspension viscosity determines the overall relaxation time of the particles in the flowing colloidal gel.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8sm01512k | DOI Listing |