Ethoxyquin: a feed additive that poses a risk for aquatic life.

Dis Aquat Organ

Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences (ZHAW), Grüental, PO Box 8820 Wädenswil, Switzerland.

Published: October 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ethoxyquin (EQ) is an antioxidant that has, to date, been commonly used in feed production. Reports on the detrimental effects of this substance on vertebrates are growing, but effects in aquatic systems have rarely been described. Therefore, the present study was conducted using serial concentrations of EQ ranging from 0.03 to 16.5 mg l-1 to determine effects on 3 types of aquatic organisms. In zebrafish, 5 mg l-1 EQ caused mortality (25%) and a further 62.5% of the embryos showed yolk sac edema as well as deformed bodies or missing eyes. Furthermore, all the investigated EQ concentrations decreased the heart rate of the embryos. The lowest observed effect level was 0.31 mg l-1. In addition to zebrafish, the study also used water fleas Daphnia magna and green algae (Scenedesmus obliquus and Chlorella vulgaris). These treatments revealed that daphnids are also sensitive to EQ, exhibiting detrimental effects with a half-maximal effective concentration (EC50) of 2.65 mg l-1 after 48 h of exposure. The algae appeared to be at least 2 times less sensitive to EQ than fish embryos or daphnids. The results were used to calculate the risk for aquatic life resulting in a maximum tolerable level of 1 µg l-1 for fish embryos and daphnids, with a safety factor of 300. According to current knowledge, this does not exceed environmental concentrations of this substance. However, this study raises further concern about the (until recently) legal maximum tolerable EQ levels in fish feeding and the rather slow pace at which authorization to use EQ as a feed additive for diverse animals in Europe is being suspended.

Download full-text PDF

Source
http://dx.doi.org/10.3354/dao03279DOI Listing

Publication Analysis

Top Keywords

feed additive
8
risk aquatic
8
aquatic life
8
detrimental effects
8
fish embryos
8
embryos daphnids
8
maximum tolerable
8
l-1
5
ethoxyquin feed
4
additive poses
4

Similar Publications

This study evaluated how dietary black seed oil (Nigella sativa L.) against the diazinon waterborne toxicity on Nile tilapia (Oreochromis niloticus), focusing on growth performance, hematological and biochemical parameters as well as oxidative stress markers and histological changes. A 40-day feeding trial was carried out using four experimental groups: Group 1 (control group), Group 2 (N.

View Article and Find Full Text PDF

The post-weaning period is stressful for pigs due to changes in their environment and diet. The occurrence of diarrhea at this stage is high. Growth promoters such as antibiotics and zinc oxide (ZnO) have been used to not only reduce post-weaning diarrhea but also improve growth performance of weaning pigs.

View Article and Find Full Text PDF

The food system is under increased pressure because of the need for sustainability, greater food safety, and increasing need for protein sources. Grasshopper-based food products are becoming a new option. Products made from grasshoppers represent a sustainable and nutritious alternative to traditional livestock.

View Article and Find Full Text PDF

In pig production, weaning is a critical period where piglets face several environmental stressors. This transition leads to a significant growth reduction and can result in digestive disorders, including diarrhea. To formulate a feed that meets zinc (Zn) and copper (Cu) requirements during the weaning period while minimizing their release into the environment, it became evident that a more bioavailable micro-mineral supplement is necessary.

View Article and Find Full Text PDF

Copper (Cu) supplementation is essential in pig nutrition; however, its effects on performance, trace element accumulation in edible tissues, and environmental excretion require careful evaluation. In the present study a total of 24 male, castrated fattening pigs of two different hybrid mast lines (11 weeks of age) were divided according to their initial body weight (25.8 ± 3.

View Article and Find Full Text PDF