Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Leukemic cells can impact the bone marrow niche to create a tumor-favorable microenvironment using their secreted factors. Little knowledge is available about immunosuppressive and tumor-promoting properties of chronic myeloid leukemia derived exosomes in bone marrow stromal components. We report here that K562-derived exosomes can affect the gene expression, cytokine secretion, nitric oxide (NO) production, and redox potential of bone marrow mesenchymal stem cells (BM-MSCs) and macrophages. Human BM-MSCs and mouse macrophages were treated with K562-derived exosomes. Our results demonstrated that the expression of the genes involved in hematopoietic developmental pathways and immune responses, including C-X-C motif chemokine 12 (Cxcl12), Dickkopf-related protein 1 (DKK1), wnt5a, interleukin 6 (IL-6), transforming growth factor-beta, and tumor necrosis factor-alpha (TNF-alpha), changed with respect to time and exosome concentration in BM-MSCs. The TNF-alpha level was higher in exosome-treated BM-MSCs compared with the control. Exosome treatment of BM-MSCs led to an increased production of NO and a decreased production of reactive oxygen species (ROS) in a time- and concentration-dependent manner. We have shown that K562-derived exosomes induce overexpression of IL-10 and TNF-alpha and downregulation of iNOS transcript levels in macrophages. The enzyme-linked immunosorbent assay results showed that TNF-alpha and IL-10 secretions increased in macrophages. Treatment of macrophages with purified exosomes led to reduced NO and ROS levels. These results suggest that K562-derived exosomes may alter the local bone marrow niche toward a leukemia-reinforcing microenvironment. They can modulate the inflammatory molecules (TNF-alpha and NO) and the redox potential of BM-MSCs and macrophages and direct the polarization of macrophages toward tumor-associated macrophages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.27142 | DOI Listing |