98%
921
2 minutes
20
Large scale cortical allografts suffer from poor incorporation and healing and often end in graft failure 5-10 years after implantation. To reduce these failures we have developed a growth-factor loaded cortical allograft capable of delivering one or two factors with a degree of temporal control and precision that permits the early release of one growth factor followed by the later and more sustained release of the other. We have loaded vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2), both critical components of bone formation and repair, onto cortical long bone allografts such that the VEGF is released first and followed shortly by BMP-2. Coated and factor-loaded allografts were placed into a critical sized rat femoral segmental defect and allowed to heal for either 4 or 8 weeks. Healing at each time point was compared to allografts loaded with only BMP-2 and allografts containing no growth factors. Results indicate statistically significant increases in new bone formation from 4 to 8 weeks around allografts loaded with both VEGF and BMP-2 over allografts with no growth factor, suggesting that factor-loaded polymer-coated allografts delivering multiple factors with temporal precision may provide a new off-the-shelf tool to the orthopedic surgeon for management of large-scale orthopedic bone defects. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1002-1010, 2019.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.b.34193 | DOI Listing |
Crit Care
September 2025
Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Hufelandstr, 55, Essen, 45239, Germany.
Background: Gender disparities persist in medical research. This study assessed gender representation trends in first and senior authorships in the five highest-ranked critical care journals (by impact factor) over a 20-year period.
Methods: We analyzed author gender distribution from 2005 to 2024.
BMC Pulm Med
September 2025
Division of Cellular Pneumology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, 23845, Germany.
Background: Volatile anesthetics are gaining recognition for their benefits in long-term sedation of mechanically ventilated patients with bacterial pneumonia and acute respiratory distress syndrome. In addition to their sedative role, they also exhibit anti-bacterial and anti-inflammatory properties, though the mechanisms behind these effects remain only partially understood. In vitro studies examining the prolonged impact of volatile anesthetics on bacterial growth, inflammatory cytokine response, and surfactant proteins - key to maintaining lung homeostasis - are still lacking.
View Article and Find Full Text PDFJ Mol Neurosci
September 2025
Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey.
The ketogenic diet (KD), a high-fat, low-carbohydrate regimen, has been shown to exert neuroprotective effects in various neurological models. This study explored how KD-alone or combined with antibiotic-induced gut microbiota depletion-affects cognition and neuroinflammation in aging. Thirty-two male rats (22 months old) were assigned to four groups (n = 8): control diet (CD), ketogenic diet (KD), antibiotics with control diet (AB), and antibiotics with KD (KDAB).
View Article and Find Full Text PDFCalcif Tissue Int
September 2025
FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141, Florence, Italy.
X-linked hypophosphatemia (XLH) is a rare and progressive disease, due to inactivating mutations in the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene. These pathogenic variants result in elevated circulating levels of fibroblast growth factor 23 (FGF23), responsible for the main clinical manifestations of XLH, such as hypophosphatemia, skeletal deformities, and mineralization defects. However, XLH also involves muscular disorders (muscle weakness, pain, reduced muscle density, peak strength, and power).
View Article and Find Full Text PDFOncogene
September 2025
Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan.
Forkhead-box-protein P3 (FOXP3) is a key transcription factor in T regulatory cells (Tregs). However, its expression and significance in non-immune stromal cells in the tumor microenvironment remain unclear. Here, we demonstrated FOXP3 expression in stromal fibroblasts of mouse and human gastrointestinal tumors.
View Article and Find Full Text PDF