A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Separating Touching Cells Using Pixel Replicated Elliptical Shape Models. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

One of the most important and error-prone tasks in biological image analysis is the segmentation of touching or overlapping cells. Particularly for optical microscopy, including transmitted light and confocal fluorescence microscopy, there is often no consistent discriminative information to separate cells that touch or overlap. It is desired to partition touching foreground pixels into cells using the binary threshold image information only, and optionally incorporating gradient information. The most common approaches for segmenting touching and overlapping cells in these scenarios are based on the watershed transform. We describe a new approach called pixel replication for the task of segmenting elliptical objects that touch or overlap. Pixel replication uses the image Euclidean distance transform in combination with Gaussian mixture models to better exploit practically effective optimization for delineating objects with elliptical decision boundaries. Pixel replication improves significantly on commonly used methods based on watershed transforms, or based on fitting Gaussian mixtures directly to the thresholded image data. Pixel replication works equivalently on both 2-D and 3-D image data, and naturally combines information from multi-channel images. The accuracy of the proposed technique is measured using both the segmentation accuracy on simulated ellipse data and the tracking accuracy on validated stem cell tracking results extracted from hundreds of live-cell microscopy image sequences. Pixel replication is shown to be significantly more accurate compared with other approaches. Variance relationships are derived, allowing a more practically effective Gaussian mixture model to extract cell boundaries for data generated from the threshold image using the uniform elliptical distribution and from the distance transform image using the triangular elliptical distribution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450753PMC
http://dx.doi.org/10.1109/TMI.2018.2874104DOI Listing

Publication Analysis

Top Keywords

pixel replication
20
image
8
touching overlapping
8
overlapping cells
8
touch overlap
8
threshold image
8
based watershed
8
distance transform
8
gaussian mixture
8
practically effective
8

Similar Publications