98%
921
2 minutes
20
Areas of selective neuronal loss (SNL) represent the first morphologic signs of damage in the penumbra region and are considered putative targets for ischemic stroke therapy. We performed a novel assessment of measuring the effects of the anti-inflammatory agent celecoxib by analyzing simultaneously the different neural populations (neurons, astrocytes, and microglia cells) in SNL and non-SNL areas. Rats were subjected to 1 hour of middle cerebral artery occlusion (MCAO) and treated with celecoxib 1 and 24 hours after ischemia. Infarct volume measurements and triple immunostaining of neurons (neuronal nuclear antigen), microglia (ionized calcium-binding adaptor molecule 1), and astroglia were performed after 12 and 48 hours of reperfusion. Motor response was tested by standard behavioral assays at 3, 12, 24, and 48 hours. Confocal analysis revealed that the percentage of SNL areas, microglia densities, and glial activation increased at 48 hours of reperfusion. Celecoxib treatment improved the neurologic deficit, reduced the infarct volume by 50% after 48 hours of reperfusion, and resulted in a reduced percentage of SNL areas and microglia and astroglia reactivity after 48 hours of reperfusion. This study proves, for the first time, that celecoxib presents postischemic neuroprotective effects in a transient MCAO model, prevents or delays the presence of SNL areas, and reduces glial activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.118.251264 | DOI Listing |
J Am Heart Assoc
September 2025
Division of Experimental Cardiology, Department of Cardiology Erasmus MC University Medical Center Rotterdam The Netherlands.
Background: Despite successful recanalization after endovascular thrombectomy, more than half of patients with acute ischemic stroke with large-vessel occlusions experience an unsatisfactory outcome. Incomplete microvascular reperfusion may contribute to it, but its occurrence remains debated, partly due to clinical observations of hyperperfusion after recanalization. This study investigates the relationship between ischemia duration, infarct development, microclot presence, and cerebral perfusion in a swine model of focal cerebral ischemia and reperfusion.
View Article and Find Full Text PDFUlus Travma Acil Cerrahi Derg
September 2025
Department of Histology and Embryology, Karadeniz Technical University Faculty of Medicine, Trabzoc-Türkiye.
Background: This study aims to show the changes in the liver, lung, kidney, and heart in the liver ischemia-reperfusion model in rats and the effect of quercetin on these changes histopathologically and immunohistochemically.
Methods: Eighteen Sprague Dawley rats were classified into three groups: Group 1 sham, Group 2 ischemia-reperfusion (IR), Group 3 ischemia-reperfusion + quercetin (IR+Q). For three days, distilled water was given to Group 1, and quercetin was given to Group 3 via gavage.
Background: Anti-tachycardia pacing (ATP) delivered from implantable cardioverter defibrillators (ICDs) provides critically timed pacing pulses to terminate ventricular tachycardia (VT). Physiological pacing through left bundle branch area (LBBA) pacing has emerged as a clinically relevant alternative to induce synchronous activation of the ventricles. The main objective of this study was to compare the efficacy and safety of ATP delivered to an LBBA lead and a conventional RV lead.
View Article and Find Full Text PDFReperfusion therapy, the restoration of blood flow following a myocardial infarction (MI), is one of the most effective treatment strategies. Unlike early reperfusion therapy, differences in infarct size or collagen content have not been reported in late reperfusion therapy. To evaluate the spatial-temporal effects of late reperfusion therapy, we conducted multimodal imaging of histologic sections of rat myocardium following permanent coronary artery occlusion or three hours of occlusion.
View Article and Find Full Text PDFStroke Vasc Neurol
September 2025
Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, Liaoning, China
Background And Aims: Preclinical and clinical studies found that head-down position (HDP) during ischaemic phase improved neurological function of acute ischaemic stroke, but the effect of HDP after reperfusion has never been investigated. This study aimed to investigate whether HDP after reperfusion can ameliorate cerebral ischaemic injury in rats.
Methods: The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established in rats, and different HDP interventions were performed.