Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Purpose: To investigate αvβ3-integrin-targeted optoacoustic imaging and MRI for monitoring a BRAF/MEK inhibitor combination therapy in a murine model of human melanoma.
Materials And Methods: Human BRAF V600E-positive melanoma xenograft (A375)-bearing Balb/c nude mice (n = 10) were imaged before (day 0) and after (day 7) a BRAF/MEK inhibitor combination therapy (encorafenib, 1.3 mg/kg/d; binimetinib, 0.6 mg/kg/d, n = 5) or placebo (n = 5), respectively. Optoacoustic imaging was performed on a preclinical system unenhanced and 5 h after i. v. injection of an αvβ3-integrin-targeted fluorescent probe. The αvβ3-integrin-specific tumor signal was derived by spectral unmixing. For morphology-based tumor response assessments, T2w MRI data sets were acquired on a clinical 3 Tesla scanner. The imaging results were validated by multiparametric immunohistochemistry (ß3 -integrin expression, CD31 -microvascular density, Ki-67 -proliferation).
Results: The αvβ3-integrin-specific tumor signal was significantly reduced under therapy, showing a unidirectional decline in all animals (from 7.98±2.22 to 1.67±1.30; p = 0.043). No significant signal change was observed in the control group (from 6.60±6.51 to 3.67±1.93; p = 0.500). Immunohistochemistry revealed a significantly lower integrin expression (ß3: 0.20±0.02 vs. 0.39±0.05; p = 0.008) and microvascular density (CD31: 119±15 vs. 292±49; p = 0.008) in the therapy group. Tumor volumes increased with no significant intergroup difference (therapy: +107±42 mm3; control +112±44mm3, p = 0.841). In vivo blocking studies with αvβ3-integrin antagonist cilengitide confirmed the target specificity of the fluorescent probe.
Conclusions: αvβ3-integrin-targeted optoacoustic imaging allowed for the early non-invasive monitoring of a BRAF/MEK inhibitor combination therapy in a murine model of human melanoma, adding molecular information on tumor receptor status to morphology-based tumor response criteria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6169922 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204930 | PLOS |