Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Segmentation of the left ventricle (LV) from three-dimensional echocardiography (3DE) plays a key role in the clinical diagnosis of the LV function. In this work, we proposed a new automatic method for the segmentation of LV, based on the fully convolutional networks (FCN) and deformable model. This method implemented a coarse-to-fine framework. Firstly, a new deep fusion network based on feature fusion and transfer learning, combining the residual modules, was proposed to achieve coarse segmentation of LV on 3DE. Secondly, we proposed a method of geometrical model initialization for a deformable model based on the results of coarse segmentation. Thirdly, the deformable model was implemented to further optimize the segmentation results with a regularization item to avoid the leakage between left atria and left ventricle to achieve the goal of fine segmentation of LV. Numerical experiments have demonstrated that the proposed method outperforms the state-of-the-art methods on the challenging CETUS benchmark in the segmentation accuracy and has a potential for practical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6151364PMC
http://dx.doi.org/10.1155/2018/5682365DOI Listing

Publication Analysis

Top Keywords

deformable model
16
left ventricle
12
fully convolutional
8
convolutional networks
8
segmentation
8
segmentation based
8
coarse segmentation
8
proposed method
8
model
5
combined fully
4

Similar Publications

Background: Genetic modifiers are believed to play an important role in the onset and severity of polycystic kidney disease (PKD), but identifying these modifiers has been challenging due to the lack of effective methodologies.

Methods: We generated zebrafish mutants of IFT140, a skeletal ciliopathy gene and newly identified autosomal dominant PKD (ADPKD) gene, to examine skeletal development and kidney cyst formation in larval and juvenile mutants. Additionally, we utilized ift140 crispants, generated through efficient microhomology-mediated end joining (MMEJ)-based genome editing, to compare phenotypes with mutants and conduct a pilot genetic modifier screen.

View Article and Find Full Text PDF

AI-enhanced predictive modeling for treatment duration and personalized treatment planning of cleft lip and palate therapy.

Int J Comput Assist Radiol Surg

September 2025

Division of Plastic and Reconstructive Surgery, Neonatal and Pediatric Craniofacial Airway Orthodontics, Department of Surgery, Stanford University School of Medicine, 770 Welch Road, Palo Alto, CA, 94394, USA.

Background: Alveolar molding plate treatment (AMPT) plays a critical role in preparing neonates with cleft lip and palate (CLP) for the first reconstruction surgery (cleft lip repair). However, determining the number of adjustments to AMPT in near-normalizing cleft deformity prior to surgery is a challenging task, often affecting the treatment duration. This study explores the use of machine learning in predicting treatment duration based on three-dimensional (3D) assessments of the pre-treatment maxillary cleft deformity as part of individualized treatment planning.

View Article and Find Full Text PDF

In this article, a biophysically realistic model of a soft octopus arm with internal musculature is presented. The modeling is motivated by experimental observations of sensorimotor control where an arm localizes and reaches a target. Major contributions of this article are: (i) development of models to capture the mechanical properties of arm musculature, the electrical properties of the arm peripheral nervous system (PNS), and the coupling of PNS with muscular contractions; (ii) modeling the arm sensory system, including chemosensing and proprioception; and (iii) algorithms for sensorimotor control, which include a novel feedback neural motor control law for mimicking target-oriented arm reaching motions, and a novel consensus algorithm for solving sensing problems such as locating a food source from local chemical sensory information (exogenous) and arm deformation information (endogenous).

View Article and Find Full Text PDF

Background: The whole plant of Evolvulus nummularius is traditionally used to treat helminth infections in Assam, India. This study was taken to evaluate the efficacy of its methanolic extract in suitable models in vitro and in vivo.

Methods: Hymenolepis diminuta exposed in vitro to E.

View Article and Find Full Text PDF

Objectives: Recommendations regarding the use of third-trimester ultrasound lack universal consensus. Yet, there is evidence which supports its value in assessing fetal growth, fetal well-being, and a number of pregnancy-related complications. This literature review evaluates the available scientific evidence regarding its applications, usefulness, and the timing of the third-trimester scan in a low-risk population.

View Article and Find Full Text PDF