A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Generating Photonastic Work from Irradiated Dyes in Electrospun Nanofibrous Polymer Mats. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

For solar-driven macroscopic motions, we assert that there is a local heating that facilitates large-scale deformations in anisotropic morphologic materials caused by thermal gradients. This report specifically identifies the fate of heat generation in photonastic materials and demonstrates how heat can perform work following excitation of a nonisomerizing dye. Utilizing the electrospinning technique, we have created a series of anisotropic nanofibrous polymer mats that comprise nonisomerizing dyes. Polymers are chosen because of their relative glass transition temperatures, elastic moduli, and melting temperatures. Light irradiation of these polymer mats with an excitation wavelength matching the absorption characteristics of the dye leads to macroscopic deformation of the mat. Analysis of still images extracted from digital videos provides plots of angular displacement vs power. The data were analyzed in terms of a photothermal model. Analyses of scanning electron microscopy micrographs for all samples are consistent to local melting in low T polymers and softening in high T polymers. Dynamic mechanical analysis allowed for quantification of the modulus change under a given light fluence. We employ these data to calculate a energy conversion efficiency. These efficiencies for the polymer mats are compared to other nonmuscular systems, including a few natural, biological samples.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b11294DOI Listing

Publication Analysis

Top Keywords

polymer mats
16
nanofibrous polymer
8
generating photonastic
4
photonastic work
4
work irradiated
4
irradiated dyes
4
dyes electrospun
4
electrospun nanofibrous
4
polymer
4
mats
4

Similar Publications