Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, with a marked potential for invasion and metastasis. Emerging evidence has suggested that dysregulation of long non-coding RNAs (lncRNAs) is associated with the development of multiple types of cancer. However, the function of lncRNAs in PDAC is poorly known. In the present study, a microarray assay was used to screen for differently expressed lncRNAs in PDAC and it was identified that cancer upregulated drug resistance (CUDR) was upregulated in PDAC. CUDR increased PDAC cell proliferation, migration and invasion, inhibited apoptosis, and promoted drug resistance; it also regulated the PDAC cell epithelial-mesenchymal transition. The CUDR-induced PDAC malignant phenotypes is via the protein kinase B and extracellular-signal-regulated kinase signaling pathways. Downregulation of CUDR may be a novel therapeutic strategy to prevent PDAC development and drug resistance in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/ijo.2018.4574 | DOI Listing |