Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Regulatory B cells (Breg) have been described as a specific immunological subsets in several mouse models. Identification of a human counterpart has remained troublesome, because unique plasma membrane markers or a defining transcription factor have not been identified. Consequently, human Bregs are still primarily defined by production of IL-10. In this study, we sought to elucidate if induced human IL-10 producing B cells are a dedicated immunological subset. Using deep immune profiling by multicolor flow cytometry and t-SNE analysis, we show that the majority of cells induced to produce IL-10 co-express pro-inflammatory cytokines IL-6 and/or TNFα. No combination of markers can be identified to define human IL-10TNFαIL-6 B cells and rather point to a general activated B cell phenotype. Strikingly, upon culture and restimulation, a large proportion of formerly IL-10 producing B cells lose IL-10 expression, showing that induced IL-10 production is not a stable trait. The combined features of an activated B cell phenotype, transient IL-10 expression and lack of subset-defining markers suggests that -induced IL-10 producing B cells are not a dedicated subset of regulatory B cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143818PMC
http://dx.doi.org/10.3389/fimmu.2018.01913DOI Listing

Publication Analysis

Top Keywords

il-10 producing
12
producing cells
12
il-10
10
human il-10
8
cells
8
pro-inflammatory cytokines
8
regulatory cells
8
cells dedicated
8
activated cell
8
cell phenotype
8

Similar Publications

Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.

View Article and Find Full Text PDF

Type 1 regulatory cells suppress T-cell cytotoxicity to alleviate liver injury during acute hepatitis B virus infection in mice.

J Immunol

September 2025

Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Qidong-Fudan Innovative Institution of Medical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.

Hepatitis B virus (HBV) exclusively infects hepatocytes and produces large quantities of subviral particles containing its surface antigen (HBsAg). T cells play a central role in controlling HBV infection but can also mediate liver injury and contribute to disease progression. However, the mechanisms that regulate T-cell responses to eliminate the virus without causing immunopathology during acute HBV infection remain poorly defined.

View Article and Find Full Text PDF

Steroid-refractory gut acute graft-versus-host disease (SR-Gut-aGVHD) is the major cause of nonrelapse death after allogeneic hematopoietic cell transplantation. High numbers of donor-type IL-22+ T cells, IL-22-dependent dysbiosis, and loss of antiinflammatory CX3CR1hi mononuclear phagocytes (MNPs) play critical roles in SR-Gut-aGVHD pathogenesis. CEACAM1 on intestinal epithelial cells (IECs) is proposed to regulate bacterial translocation and subsequent immune responses in the intestine.

View Article and Find Full Text PDF

Tuberculosis (TB) continues to cause significant global mortality, highlighting the need for improved drug delivery systems. The objective of this paper focuses in describing the formulation, optimization and in vivo assessment of rifampicin encapsulated PLGA microparticles for site-specific inhalation therapy. Microparticles for inhalation were produced by spray drying, and the DoE methodology was applied to reach the most suitable aerodynamic properties (mass median aerodynamics diameter (MMAD) 2.

View Article and Find Full Text PDF

Background: Dysregulation of immune responses may influence the progression of metabolic dysfunction-associated steatotic liver disease (MASLD) to metabolic dysfunction-associated steatohepatitis (MASH). Our recent data suggest the role of Th17-related cytokines in fibrosis advancement in MASLD. Herein, we aimed to analyze T-regulatory and Th17-producing T-lymphocytes by flow cytometry with respect to MASLD progression.

View Article and Find Full Text PDF