Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Genetic engineering plays an essential role in the development of cell lines for biopharmaceutical manufacturing. Advanced gene editing tools can improve both the productivity of recombinant cell lines as well as the quality of therapeutic antibodies. Antibody glycosylation is a critical quality attribute for therapeutic biologics because the glycan patterns on the antibody fragment crystallizable (Fc) region can alter its clinical efficacy and safety as a therapeutic drug. As an example, recombinant antibodies derived from Chinese hamster ovary (CHO) cells are generally highly fucosylated; the absence of fucose significantly enhances antibody dependent cell-mediated cytotoxicity (ADCC) against cancer cells. This chapter describes a protocol applying clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) to disrupt the α-1,6-fucosyltranferase (FUT8) gene and subsequently inhibit α-1,6-fucosylation on antibodies expressed in CHO cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-8730-6_16DOI Listing

Publication Analysis

Top Keywords

cho cells
12
gene editing
8
cell lines
8
application crispr/cas9
4
crispr/cas9 gene
4
editing method
4
method modulating
4
antibody
4
modulating antibody
4
antibody fucosylation
4

Similar Publications

Cephalothin, a First-Generation Cephem Antibiotic, Works as a Potent Inducer of Parthanatos.

Biol Pharm Bull

September 2025

Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.

Parthanatos is a noncanonical form of regulated cell death mediated by the overactivation of poly(ADP-ribose) polymerase-1, yet its regulatory mechanisms are not fully understood. To fully elucidate its regulatory mechanisms, it is necessary to establish useful research tools to investigate parthanatos. We have previously identified the human fibrosarcoma HT1080 cells as highly sensitive cells to parthanatos, and cefotaxime, a 3rd-generation cephem antibiotic, as the parthanatos inducer.

View Article and Find Full Text PDF

Differential effects of mercury compounds on mutagenicity, genotoxicity and repair of UV-DNA damage.

Toxicology

September 2025

Brown University, Department of Pathology and Laboratory Medicine, Providence, RI 02903, USA. Electronic address:

Mercury (Hg) is a global contaminant that is present in human diet as methylmercury (MeHg). Recent studies linked MeHg exposure with high risks of skin cancers. It is unknown whether MeHg is directly genotoxic in skin cells or able to enhance mutagenic effects of UV radiation.

View Article and Find Full Text PDF

Nitric oxide regulates phagocytosis through S-nitrosylation of Rab5.

J Biol Chem

September 2025

Department of Oral Disease Research, National Center for Geriatrics and Gerontology, 7-430 Moriokacho, Obu, Aichi, 474-8511, Japan; Department of dental hygiene, Ogaki women's college, 109-1 Nishinokawa-cho, Ogaki-city, Gifu, 503-8554, Japan. Electronic address:

Phagocytosis is mediated mainly by immune cells, such as macrophages, monocytes and neutrophils, that clear large pathogens including bacteria. The small GTP-binding protein Rab5 is crucial for both clathrin-dependent endocytosis and phagocytosis, but the role and mechanism of Rab5 activation during phagocytosis are poorly understood. Here we report that nitric oxide (NO), a novel regulator of Rab5, regulates phagocytosis through S-nitrosylation of Rab5.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) dimerization plays a pivotal role in cellular signaling, influencing proliferation and disease progression, particularly in cancer. Despite extensive studies, the quantitative relationship between EGFR expression levels and dimerization efficiency remains incompletely understood. In this study, we investigated EGFR dimerization kinetics using ensemble-level biochemical assays and single-molecule tracking (SMT) in living cells.

View Article and Find Full Text PDF

Background: A secondary Pasteurella multocida (Pm) infection following Mycoplasma ovipneumoniae (Mo) challenge in sheep results in severe respiratory disease. Scavenger receptor A (SRA) is a key phagocytic receptor on macrophages, which facilitates microbial clearance. However, the role of sheep SRA in Mo-associated secondary Pm infection is less understood.

View Article and Find Full Text PDF