98%
921
2 minutes
20
One challenge in cell biology is to decipher the biophysical mechanisms governing protein enrichment on curved membranes and the resulting membrane deformation. The ERM protein ezrin is abundant and associated with cellular membranes that are flat, positively or negatively curved. Using and cell biology approaches, we assess mechanisms of ezrin's enrichment on curved membranes. We evidence that wild-type ezrin (ezrinWT) and its phosphomimetic mutant T567D (ezrinTD) do not deform membranes but self-assemble anti-parallelly, zipping adjacent membranes. EzrinTD's specific conformation reduces intermolecular interactions, allows binding to actin filaments, which reduces membrane tethering, and promotes ezrin binding to positively-curved membranes. While neither ezrinTD nor ezrinWT senses negative curvature alone, we demonstrate that interacting with curvature-sensing I-BAR-domain proteins facilitates ezrin enrichment in negatively-curved membrane protrusions. Overall, our work demonstrates that ezrin can tether membranes, or be targeted to curved membranes, depending on conformations and interactions with actin and curvature-sensing binding partners.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167055 | PMC |
http://dx.doi.org/10.7554/eLife.37262 | DOI Listing |
J Biol Chem
September 2025
Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, San Francisco, CA, United States. Electronic address:
PPM1H phosphatase reverses Parkinson's disease-associated, Leucine Rich Repeat Kinase 2-mediated, Rab GTPase phosphorylation. We showed previously that PPM1H relies on an N-terminal amphipathic helix for Golgi membrane localization and this helix enables PPM1H to associate with liposomes in vitro; binding to highly curved liposomes activates PPM1H's phosphatase activity. We show here that PPM1H also contains an allosteric binding site for its non-phosphorylated reaction products, Rab8A and Rab10.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Cell, Developmental, and Integrative Biology, the University of Alabama at Birmingham, Birmingham, AL, 35294 USA.
Clathrin-mediated endocytosis (CME) is an important internalization route for macromolecules, lipids, and membrane receptors in eukaryotic cells. During CME, the plasma membrane invaginates and pinches off forming a clathrin coated vesicle. We previously identified heterogeneity in this process with clathrin coated vesicles forming though multiple routes including simultaneous clathrin accumulation and membrane invagination (constant curvature; CCM) as well as membrane bending after accumulation of flat clathrin (flat to curved; FTC).
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China.
Wearable sweat sensors are emerging as transformative noninvasive platforms for real-time physiological monitoring. However, persistent challenges regarding dynamic skin conformability, reliable adhesion, efficient sweat uptake/transport, and biosafety impede clinical translation. Herein, we developed hydrophilic-adhesive polyvinylidene fluoride (PVDF) nanofiber membranes via a bioinspired modification strategy for sweat sensor construction.
View Article and Find Full Text PDFACS Nano
September 2025
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore.
Conjugated oligoelectrolytes (COEs) constitute a powerful toolbox for detecting and modulating cell membrane properties. The versatility in their molecular structural design enables fine-tuning of their membrane intercalating behaviors, ranging from membrane disruption for antimicrobial applications to membrane stabilization for cell labeling and biosensing. However, a detailed description of the intercalation mechanism is absent, despite efforts to understand the impact of charge density and hydrophobic core length on the membrane intercalation efficiency of COEs.
View Article and Find Full Text PDFACS Chem Neurosci
September 2025
Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States.
Nt17, the N-terminal domain of the huntingtin protein (htt), has garnered significant attention for its role in htt's membrane binding and aggregation processes. Previous studies have identified a nuclear export sequence within the Nt17 domain and demonstrated its localization at various cellular organelles. Recent evidence suggests that, like other amphipathic helices, Nt17 can sense and preferentially bind to curved membranes.
View Article and Find Full Text PDF