Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The rich chemistry of organic-inorganic metal halide hybrids has enabled the development of a variety of crystalline structures with controlled morphological and molecular dimensionalities. Here we report for the first time a single crystalline assembly of metal halide clusters, (CNH)(PbCl)PbCl, in which lead chloride tetrahedrons (PbCl) and face-sharing lead chloride trimer clusters (PbCl) cocrystallize with organic cations (CNH) to form a periodical zero-dimensional (0D) structure at the molecular level. Blue light emission peaked at 470 nm with a photoluminescence quantum efficiency (PLQE) of around 83% was realized for this single crystalline hybrid material, which is attributed to the individual lead chloride clusters. Our discovery of single crystalline assembly of metal halide clusters paves a new path to functional cluster assemblies with highly tunable structures and remarkable properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.8b07731DOI Listing

Publication Analysis

Top Keywords

single crystalline
16
metal halide
16
crystalline assembly
12
assembly metal
12
halide clusters
12
lead chloride
12
crystalline
5
clusters
5
blue emitting
4
single
4

Similar Publications

Crystallization-Engineered Single-Crystal T-NbO Whiskers with Nearly 100% Exposed Vertical (001) Facets for Li-Ion Storage.

ACS Appl Mater Interfaces

September 2025

Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China.

Tailoring the crystalline structure and facet orientation of T-NbO anode electrodes is pivotal for optimizing the Li transport kinetics. Herein, a crystallization engineering strategy is employed to synthesize urchin-like T-NbO microspheres composed of single-crystalline whiskers growing along the (001) orientation. These whiskers are characterized by nearly 100% exposed vertical (001) facets that accelerate Li diffusion.

View Article and Find Full Text PDF

Rapid Removal of Azo Cationic Dyes Using a Cu(II) Hydrogen-Π-Bonded Organic Framework and Its Derived Oxide: A Combined Adsorption and Photocatalysis Study.

Langmuir

September 2025

Laboratory of Electrochemistry-Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry, USTHB, BP 32, 16111, Algiers, Algeria.

Azo dyes, prevalent in various industries, including textile dyeing, food, and cosmetics, pose significant environmental and health risks due to their chemical stability and toxicity. This study introduces the synthesis and application of a copper hydrogen-π-bonded benzoate framework (Cu-HBF) and its derived marigold flower-like copper oxide (MFL-CuO) in a synergetic adsorption-photocatalytic process for efficiently removing cationic azo dyes from water, specifically crystal violet (CV), methylene blue (MB), and rhodamine B (RhB). The Cu-HBF, previously available only in single crystal form, is prepared here as a crystalline powder for the first time, using a low-cost and facile procedure, allowing its application as an adsorbent and also serving as a precursor for synthesizing well-structured copper oxide (MFL-CuO).

View Article and Find Full Text PDF

All-small-molecule organic solar cells (ASM-OSCs) with completely definite chemical structure are an ideal model to establish the relationship between molecular structure and device performance via aggregates. The end-capped acceptor unit is of great significance in the regulation of aggregates by essential molecular interactions. However, the successful end-capped acceptor units for small-molecule donors have been rather poorly studied and only focused on the alkyl substituted rhodamine, limiting further development for ASM-OSCs.

View Article and Find Full Text PDF

Novel Precursor for h‑BN Synthesis on Ni(111) Substrates.

J Phys Chem C Nanomater Interfaces

September 2025

Leiden Insitute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, Netherlands.

In this study, we report the synthesis of single-crystalline h-BN on Ni(111) under ultrahigh vacuum (UHV) conditions using hexamethylborazine (HMB) as a nonclassical precursor. The novel use of HMB facilitates the diffusion of methyl groups into the bulk of Ni(111), playing a critical role in the achievement of high-quality crystalline h-BN layers. The synthesis is performed on a 2 mm-thick Ni(111) single crystal and on a 2-μm-thick Ni(111) thin film on sapphire to evaluate the feasibility of synthesizing h-BN on industrially relevant substrates.

View Article and Find Full Text PDF

Lithium metavanadate (LiVO) is a material of growing interest due to its monoclinic 2/ structure, which supports efficient lithium-ion diffusion through one-dimensional channels. This study presents a detailed structural, electrical, and dielectric characterization of LiVO synthesized a solid-state reaction, employing X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and impedance/dielectric spectroscopy across a temperature range of 473-673 K and frequency range of 10 Hz to 1 MHz. XRD and Rietveld refinement confirmed high crystallinity and single-phase purity with lattice parameters = 10.

View Article and Find Full Text PDF