98%
921
2 minutes
20
Background: The dorsolateral prefrontal cortex (DLPFC) is involved with allocating attentional resources to maintain postural control. However, it is unknown whether age-related structural and functional declines of the DLPFC may impair postural control during sensory manipulation. In this study, we aim to understand the effects of aging on the DLPFC when sensory cues were removed or presented inaccurately (i.e., increased sensory complexity) during the sensory orientation test (SOT).
Methods: Twenty young (18-25 years) and 18 older (66-73 years) healthy adults were recruited to undertake the SOT, which consisted of six conditions aimed at removing or disrupting the visual, vestibular, and proprioceptive senses. During these six SOT conditions, functional near-infrared spectroscopy (fNIRS), consisting of eight transmitter-receiver optode pairs (four channels over the left and right DLPFC), was used to measure hemodynamic responses (i.e., changes in oxy- [O Hb] and deoxyhemoglobin [HHb]) from the bilateral DLPFC.
Results: Our results show an increase in bilateral DLPFC activation (i.e., increase in O Hb and concomitant smaller decrease in HHb) with increasing sensory complexity in both young and older adults. The increase in left and right DLPFC activation during more complex sensory conditions was greater, which was concomitant with reduced balance performance in older adults compared to younger adults. Furthermore, we observed a right lateralized DLPFC activation in younger adults. Finally, a significant positive association was observed between balance performance and increased bilateral DLPFC activation particularly for SOT conditions with greater sensory disruptions.
Conclusion: Our findings highlight the involvement of the DLPFC in maintaining postural control, particularly during complex sensory tasks, and provide direct evidence for the role of the DLPFC during postural control of a clinically relevant measure of balance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6192391 | PMC |
http://dx.doi.org/10.1002/brb3.1109 | DOI Listing |
Front Neurol
August 2025
Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States.
Introduction: External continuous perturbations using a motion platform have been developed by employing either sum-of-sines (SoS) or a pseudorandom ternary sequence (PRTS) of numbers to quantify body sway evoked in the medial-lateral (ML) or anterior-posterior (AP) directions, which ultimately helps understand the human postural control system. These stimuli have been provided via pitch tilts of the motion platform for evaluations of AP balance responses or roll tilts for ML balance responses. However, little is known about whether a healthy postural control system responds to 2-dimensional (2D) perturbations similarly when the perturbation stimuli are provided in semicircular canal coordinates (i.
View Article and Find Full Text PDFJ Intensive Care
September 2025
German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-Universitat (LMU), University Hospital Grosshadern, Munich, Germany.
Background: Survivors of critical illness frequently face physical, cognitive and psychological impairments after intensive care. Sensorimotor impairments potentially have a negative impact on participation. However, comprehensive understanding of sensorimotor recovery and participation in survivors of critical illness is limited.
View Article and Find Full Text PDFMed Eng Phys
October 2025
Mechatronics Engineering Department, Sakarya University of Applied Sciences, Serdivan, Sakarya, 54600, Sakarya, Turkey; Systems Engineering Department, Military Technological College, Al Matar, Muscat, 111, Muscat, Oman. Electronic address:
Balance is a critical component of daily activities and overall quality of life. This study aims to develop a cost-effective exercise system for the rehabilitation of balance disorders by combining a sensor module with target-oriented video games. The system, designed using a microcontroller-controlled sensor module and Unity game engine, features a game component that provides visual feedback and is synchronized with the platform movements.
View Article and Find Full Text PDFPLoS One
September 2025
Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada.
Stroke significantly contributes to long-term disability, one of the problems is with impaired balance control, increasing the risk of falls. The risk of falls may be mitigated using reactive balance training (RBT) which has been shown to effectively reduce fall risk by enhancing reactive stepping following repeated balance perturbations. However, the optimal RBT intensity for people with chronic stroke remains unknown.
View Article and Find Full Text PDFJ Asthma
September 2025
Department of Physical Therapy, School of Medicine, University of São Paulo, São Paulo, Brazil.
Background: Postural balance is impaired in adults with asthma; however, this remains poorly understood in older people with asthma.
Objective: To assess postural balance and the incidence of falls in older individuals with moderate to severe asthma.
Methods: A controlled cross-sectional study with follow-up included individuals aged 65 to 80 years (asthma group,AG; n = 26) and without asthma (control group,CG; n = 27).