98%
921
2 minutes
20
Modification of whey protein isolate (WPI) powders is used in the food industry to enhance the functional properties of WPI. We investigated the impact of severe dry heating (DH) at 100 °C for up to 36 h on an alkaline-treated (pH 9.5), spray dried (water activity of ~0.24) WPI powder. Dry heated powders and their reconstituted suspensions were analysed. DH for 0-6 h led to 47% loss of native proteins, increases in the levels of soluble aggregates (×2.2) and of advanced glycation end-products of the Maillard reaction (at least ×2.7) and to powder browning (at least ×3) with a 95% decrease in free lactose content. DH for at least 12 h led to a decrease in soluble aggregates with concomitant formation of large, stable and insoluble microparticles. These microparticles had a microsphere structure, contained 98% of water phase and were made of insoluble powder particles resulting from protein cross-links during DH. Microparticle size could be altered by varying the pH of the suspension: at pH 6.5, microsphere size was 3-5 times larger than powder particle size, but decreased as the suspension pH neared the isoelectric point. DH could be a useful method for producing functional protein ingredients as these microparticles had very high water retention properties and high viscosity values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2018.07.004 | DOI Listing |
Environ Sci Pollut Res Int
September 2025
Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
The significant global energy consumption strongly emphasizes the crucial role of net-zero or green structures in ensuring a sustainable future. Considering this aspect, incorporating thermal insulation materials into building components is a well-accepted method that helps to enhance thermal comfort in buildings. Furthermore, integrating architectural components made from solid refuse materials retrieved from the environment can have significant environmental benefits.
View Article and Find Full Text PDFEvol Med Public Health
July 2025
Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.
Background And Objectives: Water is essential for proper physiological function. As temperatures increase, populations may struggle to meet water needs despite adaptations or acclimation; chronic dehydration can cause kidney damage. We evaluate how daily water requirements are associated with ambient temperature (ambT), wet bulb globe temperature (WBGT), urine specific gravity (USG; marker of hydration status), and albumin:creatinine ratio (ACR; kidney function biomarker) among Daasanach pastoralists living in a hot, dry northern Kenyan climate.
View Article and Find Full Text PDFAoB Plants
October 2025
Instituto de Ecología, Departamento de Ecología de la Biodiversidad, Universidad Nacional Autónoma de México, Campus Hermosillo, Luis Donaldo Colosio s/n, Los Arcos, Hermosillo, Sonora CP 83250, México.
To cope with heat and water stress, evergreen and deciduous species from hot and arid deserts should adjust their stomatal conductance ( ) and leaf water potential (Ψ) regulation in response to changes in soil water availability, high temperatures, and vapour pressure deficits (VPDs). To test whether phenology induces changes in -Ψ coordination, we tested for associations between 14 leaf traits involved in leaf economics, hydraulics, and stomatal regulation, including minimum seasonal water potential (Ψ) and maximum ( ), turgor loss point (Ψ), osmotic potential (Ψ), leaf area (LA), and specific leaf area (SLA), across 12 tree species from the Sonoran Desert with contrasting phenology. We found that foliar phenology, leaf hydraulics, and leaf economic traits are coordinated across species and organized along the axis of physiological efficiency and safety in response to temperature and VPD.
View Article and Find Full Text PDFBiology (Basel)
July 2025
Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico.
Anthropogenic disturbance alters macro- and microclimatic conditions, often increasing ambient temperatures. These changes can strongly affect insects, particularly those experiencing high thermal stress (i.e.
View Article and Find Full Text PDFEnviron Microbiome
September 2025
Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Higashi-Hiroshima, 739-8530, Japan.
Background: Indoor microbial communities play a critical role in influencing indoor environmental quality and human health and are shaped by occupant activity, surface characteristics, and environmental conditions. While previous studies have examined these factors individually, systematic evaluations of their combined interactions, particularly involving Heating, Ventilation, and Air Conditioning (HVAC) and drainage systems, remain limited. This controlled, long-term (1.
View Article and Find Full Text PDF