Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recently, we developed a bioinformatic algorithm dividing drosophila genome into 4 types of chromatin which differ in protein composition. This allows us to propose a model of structural and functional organization of interphase chromosomes which postulates an existence of correlation between the chromatin types and morphological structures of polytene chromosomes. So, constantly and everywhere open chromatin type named «aquamarine» is characteristic of interbands, while the combinations of the other three types («lazurite», «malachite» and «ruby») form the bands. In this study, we characterized protein composition, genetic organization and morphological features of 39 «lazurite»-chromatin regions in polytene chromosomes. We found out that «lazurite»-chromatin usually form thin «grey» bands and more rarely — boundary portions of large bands. This type of chromatin contains coding parts and 3R-ends of genes and is enriched with proteins and histone modifications associated with active transcription at the stage of elongation. The expression patterns of these genes differ greatly depending on the type of chromatin in their 5R-regions.

Download full-text PDF

Source

Publication Analysis

Top Keywords

chromatin type
8
thin «grey»
8
«grey» bands
8
protein composition
8
polytene chromosomes
8
type chromatin
8
chromatin
5
characteristic chromatin
4
type
4
type corresponding
4

Similar Publications

Aims: Although the ability of the heart to adapt to environmental stress has been studied extensively, the molecular and cellular mechanisms responsible for cardioprotection are not yet fully understood. In this study, we sought to elucidate these mechanisms for cytoprotection using a model of stress-induced cardiomyopathy.

Methods And Results: We administered Toll-like receptor (TLR) agonists or diluent to wild-type mice and assessed for cardioprotection against injury from a high intraperitoneal dose of isoproterenol (ISO) administered 7 days later.

View Article and Find Full Text PDF

KMT2A-rearranged leukemia: from mechanism to drug development.

Exp Hematol

September 2025

Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata 997-0052, Japan. Electronic address:

Gene rearrangements of the human MLL gene (also known as KMT2A) generate multiple fusion oncoproteins which cause leukemia with poor prognosis. MLL is an epigenetic regulator that reads and writes epigenetic information and has an evolutionarily conserved role maintaining expression of Homeotic (HOX) genes during embryonic development. Most MLL gene rearrangements found in leukemia generate a constitutively active version of the wild-type protein, which causes overexpression of HOX and other genes and leukemic transformation of normal hematopoietic progenitors.

View Article and Find Full Text PDF

Unlabelled: Human adenoviruses (HAdVs) induce significant reorganization of the nuclear environment, leading to the formation of virus-induced subnuclear structures known as replication compartments (RCs). Within these RCs, viral genome replication, gene expression, and modulation of cellular antiviral responses are tightly coordinated, making them valuable models for studying virus-host interactions. In a recent study, we analyzed the protein composition of HAdV type 5 (HAdV-C5) RCs isolated from infected primary cells at different time points during infection using quantitative proteomics.

View Article and Find Full Text PDF

Histone genes contain sequences responsible for coding five types of proteins (H1, H2A, H2B, H3, and H4) that are of great importance for chromatin organization. Their transcriptional regulation through DNA methylation has been little studied. Testudines are ancient reptiles with high cytogenetic diversity (2 = 26-68), with a large number of histone gene loci in their karyotype.

View Article and Find Full Text PDF

Meiotic crossovers promote correct chromosome segregation and the shuffling of genetic diversity. However, the measurement of crossovers remains challenging, impeding our ability to decipher the molecular mechanisms that are necessary for their formation and regulation. Here we demonstrate a novel repurposing of the single-nucleus Assay for Transposase Accessible Chromatin with sequencing (snATAC-seq) as a simple and high-throughput method to identify and characterize meiotic crossovers from haploid testis nuclei.

View Article and Find Full Text PDF