Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Combining statistical parametric maps (SPM) from individual subjects is the goal in some types of group-level analyses of functional magnetic resonance imaging data. Brain maps are usually combined using a simple average across subjects, making them susceptible to subjects with outlying values. Furthermore, t tests are prone to false positives and false negatives when outlying values are observed. We propose a regularized unsupervised aggregation method for SPMs to find an optimal weight for aggregation, which aids in detecting and mitigating the effect of outlying subjects. We also present a bootstrap-based weighted t test using the optimal weights to construct an activation map robust to outlying subjects. We validate the performance of the proposed aggregation method and test using simulated and real data examples. Results show that the regularized aggregation approach can effectively detect outlying subjects, lower their weights, and produce robust SPMs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6865509 | PMC |
http://dx.doi.org/10.1002/hbm.24355 | DOI Listing |