98%
921
2 minutes
20
The complete synthesis of D-α-tocopherol was achieved using our developed-Ullmann C-O coupling reaction as a key reaction. The synthesis of the core structure of D-α-tocopherol, which is a chiral chromane, has never been reported using intramolecular Ullmann C-O coupling reactions owing to the low reactivity of electron-rich iodoarenes with tertiary alcohols. Because the developed intramolecular C-O coupling reactions prefer electron-rich iodoarenes with tertiary alcohols, we successfully synthesized the chiral chromane core and achieved the total synthesis of D-α-tocopherol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/cpb.c18-00460 | DOI Listing |
Nucleic Acids Res
September 2025
Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic.
RNA G-quadruplexes (rG4s) are emerging as vital structural elements involved in processes like gene regulation, translation, and genome stability. Found in untranslated regions of messenger RNAs (mRNAs), they influence translation efficiency and mRNA localization. Additionally, rG4s of long noncoding RNAs and telomeric RNA play roles in RNA processing and cellular aging.
View Article and Find Full Text PDFDalton Trans
September 2025
Instituto de Química, Universidad Nacional Autónoma de México, Circuito Interior, CU, Ciudad de México, 04510, Mexico.
Synthesis, characterization, and electrocatalytic water oxidation studies of the cubane-type complexes [(μ-)CoCl(MeOH)] (1) and [(μ-)CoCl(MeOH)] (2) are herein reported. Cubanes 1 and 2 were obtained in high yields under mild conditions by self-assembly of the ligands = 1--2-benzimidazolylmethanol and = 1-methyl-2-benzimidazolylmethanol with CoCl·6HO in basic methanolic solution. Both compounds feature a cubane-type structure in which the central {CoO} units are built by four Co centers coordinated by alkoxide-bridged oxygen and nitrogen atoms from the deprotonated ligands and stabilized by MeOH molecules and chloride ions.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Instituto Politécnico Nacional, ESIME-Zacatenco, Zacatenco, 07300 Mexico city, Mexico.
Lignocellulosic materials derived from by-products such as cellulose typically provide enhanced interfacial properties when functionalized with coupling agents, such as maleic anhydride (MA), and incorporated into polylactic acid (PLA) polymers. This research aims to identify the optimal conditions for either improving or maintaining PLA properties evaluating interactions by incorporating varying amounts of cellulose (5-28 wt%) extracted from sawdust biomass and PLA-g-MA (3-20 wt%) composites into pure PLA. This is accomplished through an extreme vertices mixture design (EVMD).
View Article and Find Full Text PDFACS Biomater Sci Eng
August 2025
Institute of Crystallography, National Council of Research, CNR-IC, Via P. Gaifami 18, Catania 95126, Italy.
Hydroxyapatite (Hap) is a prominent biomaterial used as an effective implant material in bone tissue engineering, but its use presents some points of weakness in bone regeneration efficiency. Different biofunctionalization strategies have been utilized to increase the regenerative Hap capacities. Carnosine (Car) or β-alanyl-l-histidine dipeptide has received much attention due to its beneficial effects in osteoarticular diseases and bone tissue healing.
View Article and Find Full Text PDFGels
August 2025
STARTNETICS-Department of Chemical Science and Technologies, Tor Vergata University of Rome, 00133 Roma, Italy.
In the field of advanced electrical energy conversion and storage, remarkable attention has been given to the development of new, more sustainable electrolytes. In this regard, the combination of redox shuttles with aqueous bio-polymer gels seems to be a valid alternative via which to overcome the typical drawbacks of common liquid electrolytes such as corrosion, volatility or leakage. Despite the promising results obtained so far, redox-active species such as bis(6,6'-dimethyl-2,2'-bipyridine)copper(I) trifluoromethanesulfonylimide, ([Cu(I)(dmby)]TFSI), still present inherent challenges associated with their poor water solubility and oxidative lability, which prevents their employment in cheap and sustainable aqueous electrolytes.
View Article and Find Full Text PDF