98%
921
2 minutes
20
Accumulating evidence shows alterations in the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) in ALS patients and in animal models of disease, mainly by endothelial cell (EC) damage. Repair of the altered barrier in the CNS by replacement of ECs via cell transplantation may be a new therapeutic approach for ALS. Recently, we demonstrated positive effects towards BSCB repair by intravenous administration of unmodified human bone marrow CD34 (hBM34) cells at different doses into symptomatic ALS mice. However, particular benefits of these transplanted cells on microvascular integrity in symptomatic ALS mice are still unclear. The aim of the present study was to determine the structural and functional spinal cord capillary integrity in symptomatic ALS mice after intravenous administration of hBM34 cells. The G93A mice at 13 weeks of age intravenously received one of three different cell doses (5 × 10, 5 × 10, or 1 × 10) and were euthanized at 17 weeks of age (4 weeks post-transplant). Control groups were media-treated and non-carrier mutant SOD1 gene mice. Capillary ultrastructural (electron microscopy), immunohistochemical (laminin and HuNu), and histological (myelin and capillary density) analyses were performed in the cervical and lumbar spinal cords. Capillary permeability in the spinal cords was determined by Evans Blue (EB) injection. Results showed significant restoration of ultrastructural capillary morphology, improvement of basement membrane integrity, enhancement of axonal myelin coherence, and stabilization of capillary density in the spinal cords primarily of ALS mice receiving the high dose of 1 × 10 cells. Moreover, substantial reduction of parenchymal EB levels was determined in these mice, confirming our previous results on capillary permeability. Additionally, transplanted cells were detected in blood smears of sacrificed late symptomatic mice by HuNu marker. Altogether, these results provide novel evidence that unmodified bone marrow hematopoietic stem cell treatment at optimal dose might be beneficial for structural and functional repair of the damaged BSCB in advanced stage of ALS, potentially resulting in delayed disease progression by increased motor neuron survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203661 | PMC |
http://dx.doi.org/10.1016/j.expneurol.2018.08.012 | DOI Listing |
Brain
September 2025
IRCSS Fondazione Santa Lucia, European Center for Brain Research (CERC), Rome 00143, Italy.
Innate immune signaling pathways are hyperactivated in the central nervous system (CNS) of patients with Amyotrophic Lateral Sclerosis (ALS), as well as in preclinical models with diverse causative backgrounds including TDP-43, SOD1, and C9orf72 mutations. This raises an important question of whether these pathways are key pathogenic features of the disease, and whether therapeutic amelioration could be beneficial. Here, we systematically profile Type-I interferon (IFN)-stimulated gene (ISG) expression signatures using a non-biased approach in CNS tissue from a cohort of 36 individuals with ALS, including sporadic ALS (sALS; n=18), genetic ALS caused by (i) a C9orf72 hexanucleotide repeat expansion (C9-ALS; n=11), and (ii) a SOD1 mutation (SOD1-ALS; n=5), alongside age- and sex-matched individuals who died of a non-neurological cause (n=12).
View Article and Find Full Text PDFJ Neurosci
September 2025
Center for Neurodegenerative Disease Research, Dept. Pathology, Perelman School of Medicine at the University of Pennsylvania, 3 Maloney Bldg, 3600 Spruce St, Philadelphia, PA 19140, USA.
Neuronal hyperexcitability is a hallmark of amyotrophic lateral sclerosis (ALS) but its relationship with the TDP-43 aggregates that comprise the predominant pathology in over 90% of ALS cases remains unclear. Emerging evidence indicates that TDP-43 pathology induces neuronal hyperexcitability, which may contribute to excitotoxic neuronal death. To characterize TDP-43 mediated network excitability changes in a disease-relevant model, we performed in vivo continuous electroencephalography monitoring and ex vivo acute hippocampal slice electrophysiology in rNLS8 mice (males and females), which express human TDP-43 with a defective nuclear localization signal (hTDP-43ΔNLS).
View Article and Find Full Text PDFActa Neuropathol
September 2025
Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, Madrid, Spain.
TDP-43 is a nuclear protein encoded by the TARDBP gene, which forms pathological aggregates in various neurodegenerative diseases, collectively known as TDP-43 proteinopathies, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). These diseases are characterized by multiple pathological mechanisms, with disruptions in lipid regulatory pathways emerging as a critical factor. However, the role of TDP-43 in the regulation of the brain lipid homeostasis and the potential connection of TDP-43 dysfunction to myelin alterations in TDP-43 proteionopathies remain poorly understood, despite the fact that lipids, particularly cholesterol, comprise nearly 70% of myelin.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
September 2025
Sanofi, Rare and Neurologic Disease Research TA, Cambridge, MA 02141, USA.
Pompe disease (PD) is a multisystemic progressive disease caused by acid-alpha glucosidase (GAA) deficiency. Patients display a spectrum of phenotypes ranging from the severe, rapidly progressive infantile-onset PD (IOPD) form to the slower progressing late-onset PD (LOPD). Enzyme replacement therapies (ERTs) are the only approved treatments; they decrease mortality in IOPD while maintaining or improving motor and respiratory function in LOPD.
View Article and Find Full Text PDFBr J Pharmacol
September 2025
Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
Background And Purpose: Patients with amyotrophic lateral sclerosis (ALS) are prescribed many medications for symptomatic relief. However, how potential alterations to the blood-brain barrier (BBB) affect the brain exposure of drugs in ALS remains under-investigated.
Experimental Approach: We used high-dimensional proteomic analysis, cellular metabolism, and mitochondrial functional assays to characterise isolated brain microvascular endothelial cells (BMECs) from wildtype and SOD1 transgenic mice, a mouse model of familial ALS, at a late-symptomatic age (P115-120), together with a transcardiac brain perfusion technique to assess BBB function in situ.