98%
921
2 minutes
20
Uniparental gene expression, observed in both animals and plants, is termed genomic imprinting. Genomic imprinting is a well-known epigenetic phenomenon regulated through epigenetic modifications such as DNA methylation and histone modifications. Recent genome-wide studies of endosperm transcription have revealed the rapid change of imprinted genes between species, suggesting the flexibility of this phenomenon. Although the functional significance and evolutionary trends of imprinted genes are still obscure, it can be clarified by inter-species comparisons. In this study, we analyzed the pattern of genomic imprinting in Brassica rapa, a species related to Arabidopsis thaliana. Compared with the ancient karyotype of A. thaliana and B. rapa, B. rapa has a triplicated genome. Many imprinted genes, beyond the estimated number previously reported in other species, were observed. Several imprinted genes have been conserved among species in Brassicaceae. We also observed rapid molecular evolution of imprinted genes compared to non-imprinted genes in B. rapa. Especially, imprinted gene overlapping between species showed more rapid molecular evolution and preferential expression in endosperms. It may imply that a small number of imprinted genes have retained functional roles among diverged species and have been the target of natural selection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/pcp/pcy178 | DOI Listing |
Stem Cell Rev Rep
September 2025
Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
Mutations in Delta Like Non-Canonical Notch Ligand 1 (DLK1), a paternally expressed imprinted gene, underlie central precocious puberty (CPP), yet the mechanism remains unclear. To test the hypothesis that DLK1 plays a role in gonadotropin releasing hormone (GnRH) neuron ontogeny, 75 base pairs were deleted in both alleles of DLK1 exon 3 with CRISPR-Cas9 in human pluripotent stem cells (hPSCs). This line, exhibiting More than 80% loss of DLK1 protein, was differentiated into GnRH neurons by dual SMAD inhibition (dSMADi), FGF8 treatment and Notch inhibition, as previously described, however, it did not exhibit accelerated GNRH1 expression.
View Article and Find Full Text PDFIdentifying drivers of metastasis is essential for developing new treatments for patients with advanced disease. Here, we identify as a robust driver of breast cancer metastasis. Previous work established as an imprinted gene expressed by trophoblasts which are critical for vascular remodeling during placental development.
View Article and Find Full Text PDFAutosomal monoallelic gene expression and asynchronous replication between alleles are well-established features of imprinted genes and genes regulated by allelic exclusion. Inactivation/Stability Centers (I/SCs) are recently described autosomal loci that exhibit epigenetic regulation of allelic expression and replication timing, with differences that can be comparable to those observed between the active and inactive X chromosomes . Here we characterize hundreds of autosomal loci with allele-specific epigenetic regulation of replication timing and gene expression, defining them as I/SCs.
View Article and Find Full Text PDFCardiovasc Endocrinol Metab
September 2025
Biochemistry Department, Azerbaijan Medical University, Baku, Azerbaijan.
Central precocious puberty (CPP) results from premature reactivation of the hypothalamic-pituitary-gonadal axis and is increasingly recognized as a systemic condition linked to cardiometabolic health. Genetic mutations, particularly in imprinted genes such as and , are major monogenic causes of familial CPP, while rare activating variants in and highlight the pivotal role of kisspeptin signaling. Neuropeptides, including kisspeptin and neurokinin B, are central to pubertal regulation.
View Article and Find Full Text PDF