98%
921
2 minutes
20
Purpose: Relative biological effectiveness (RBE) accounts for the differences in biological effect from different radiation types. The RBE for proton therapy remains uncertain, as it has been shown to vary from the clinically used value of 1.1. In this work we investigated the RBE of protons and correlated the biological differences with the underlying physical quantities.
Materials And Methods: Three cell lines were irradiated (CHO, Chinese hamster ovary; A549, human lung adenocarcinoma; and T98, human glioma) and assessed for cell survival by using clonogenic assay. Cells were irradiated with 71- and 160-MeV protons at depths along the Bragg curve and 6-MV photons to various doses. The dose-averaged lineal energy ( ) was measured under similar conditions as the cells by using a microdosimeter. Dose-averaged linear energy transfer (LET) was also calculated by using Monte Carlo (MC) simulations. Survival data were fit by using the linear quadratic model. The RBE values were calculated by comparing the physical dose (/) that results in 50% () and 10% () cell survival, and survival after 2 Gy ().
Results: Proton RBE values ranged from 0.89 to 2.40. The RBE for all 3 cell lines increased with decreasing proton energy and was higher at 50% survival than at 10% survival. Additionally, both A549 and T98 cells generally had higher RBE values relative to the CHO cells, indicating a greater biological response to protons. An increase in RBE corresponded with an increase in and LET.
Conclusion: Proton RBE was found to depend on mean proton energy, survival end point, and cell type. Changes in both and LET were also found to impact proton RBE values, but consideration of the energy spectrum may provide additional information. The RBE values in this study vary greatly, indicating the clinical value of 1.1 may not be suitable in all cases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6110616 | PMC |
http://dx.doi.org/10.14338/IJPT-17-00031.1 | DOI Listing |
Med Phys
September 2025
Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology (QST), Chiba, Japan.
Background: Multi-ion radiotherapy using carbon, oxygen, and neon ions aims to improve local control by increasing dose-averaged linear energy transfer (LET) in the target. However, there has been limited understanding of how to utilize variables for multi-ion treatment planning such as the selection and arrangement of ion species.
Purpose: An in silico study was conducted to explore the feasibility of increasing a minimum LET, and the optimal selection and arrangement of ion species in multi-ion therapy for increasing LET in tumors of varying sizes mimicking bone and soft tissue sarcomas (BSTS).
J Neurooncol
September 2025
Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA.
Purpose: Cranial irradiation is associated with health-related quality of life (HRQoL) deficits in childhood cancer survivors. We investigated the relationship between radiation dose to brain substructures and HRQoL in children with brain tumors treated with proton beam therapy (PBT).
Methods: Data were obtained from children in the Pediatric Proton/Photon Consortium Registry who received PBT for primary brain tumors between 2015 and 2021.
Med Phys
September 2025
Heidelberg Institute for Radiation Oncology (HIRO), National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany.
Background: As advanced treatment plans increasingly include optimizing both dose and linear energy transfer (LET), there is a growing demand for tools to measure LET in clinical settings. Although various detection systems have been investigated in this pursuit, the scarcity of detectors capable of providing per-ion data for a fast and streamlined verification of LET distributions remains an issue. Silicon pixel detector technology bridges this gap by enabling rapid tracking of single-ion energy deposition.
View Article and Find Full Text PDFBiomedicines
July 2025
Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40402, Taiwan.
: Within the range of spread-out Bragg peak (SOBP), LET (linear energy transfer) gradually increases from proton beam entrance point toward the beam exit direction. While it is expected that the change in LET would lead to correspondent change in RBE (relative biological effectiveness) on many human cell lines, the incomplete cell killing due to low LET can result in tumor recurrence. Hence, this study aimed to assess the RBE on different cancer cell lines along low-LET proton SOBP.
View Article and Find Full Text PDFCancers (Basel)
August 2025
Department of Oncology-Pathology, Karolinska Institute, 17177 Stockholm, Sweden.
: The current standard treatment for locally advanced rectal cancer (LARC) is neoadjuvant chemoradiotherapy, or total neoadjuvant therapy (TNT), followed by total mesorectal excision (TME). If the neoadjuvant treatment results in a clinical complete response (cCR), non-operative management of LARC might be possible. It is hypothesized that cCR rates will increase with increasing radiotherapy doses.
View Article and Find Full Text PDF