Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Magnetic resonance imaging physics can be a complex and challenging topic for the practising cardiologist. Its evolving nature and the increasing number of novel sequences used in clinical scanning have been topics of excellent reviews; however, the basic understanding of physics underlying the creation of images remains difficult for many cardiologists. In this review, we go back to the basic physics theories underpinning magnetic resonance and explain their application and use in achieving good quality cardiac imaging, whilst describing established and novel magnetic resonance sequences. By understanding these basic principles, it is anticipated that cardiologists and other health professionals will then appreciate more advanced physics manuscripts on cardiac scanning and novel sequences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6093143 | PMC |
http://dx.doi.org/10.1177/2048004018772237 | DOI Listing |