A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Linking variation in intrinsic water-use efficiency to isohydricity: a comparison at multiple spatiotemporal scales. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Species-specific responses of plant intrinsic water-use efficiency (iWUE) to multiple environmental drivers associated with climate change, including soil moisture (θ), vapor pressure deficit (D), and atmospheric CO concentration (c ), are poorly understood. We assessed how the iWUE and growth of several species of deciduous trees that span a gradient of isohydric to anisohydric water-use strategies respond to key environmental drivers (θ, D and c ). iWUE was calculated for individual tree species using leaf-level gas exchange and tree-ring δ C in wood measurements, and for the whole forest using the eddy covariance method. The iWUE of the isohydric species was generally more sensitive to environmental change than the anisohydric species was, and increased significantly with rising D during the periods of water stress. At longer timescales, the influence of c was pronounced for isohydric tulip poplar but not for others. Trees' physiological responses to changing environmental drivers can be interpreted differently depending on the observational scale. Care should be also taken in interpreting observed or modeled trends in iWUE that do not explicitly account for the influence of D.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.15384DOI Listing

Publication Analysis

Top Keywords

environmental drivers
12
intrinsic water-use
8
water-use efficiency
8
iwue
5
linking variation
4
variation intrinsic
4
efficiency isohydricity
4
isohydricity a comparison
4
a comparison multiple
4
multiple spatiotemporal
4

Similar Publications