Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The goal of this study is to develop a simple one-pot method for the synthesis of a zwitterionic small molecule bearing disulfide moiety, which can effectively inhibit nonspecific protein adsorption on macroscopic and nanoscopic gold surfaces. To this end, the optimal molecular structure of a pyridine disulfide derivative was explored and a zwitterionic small molecule was successfully synthesized from the tertiary amine residue on the pyridine ring through a one-pot method. The coating conditions of the synthesized zwitterionic molecules on the gold surface were optimized through contact angle measurements, and the strong interactions between the gold surface and the disulfide moiety of the zwitterion small molecule were confirmed by surface plasmon resonance (SPR) analysis and X-ray photoelectron spectroscopy. The antibiofouling properties of the coated gold surface were analyzed by fluorescence microscopic observations after contacting with FITC-labeled bovine serum albumin (BSA) and SPR sensor as contacting with BSA solution. In addition, the effect of zwitterion-coating on the salt stability of and protein adsorption on nanoscopic gold surfaces were examined through a NaCl stability test and BSA adsorption test, respectively. From the obtained results, it was confirmed that the simply synthesized zwitterionic small molecule was effective in inhibiting nonspecific protein adsorption on macroscopic and nanoscopic gold surfaces; further, it enhanced the salt stability of gold nanoparticle surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.8b01532 | DOI Listing |