Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Performing microsurgery requires a breadth and depth of experience that has arguably been reduced as result of diminishing operating exposure. Fresh frozen cadavers provide similar tissue handling to real-time operating; however, the bloodless condition restricts the realism of the simulation. We describe a model to enhance flap surgery simulation, in conjunction with qualitative assessment.
Methods: The fresh frozen cadaveric limbs used in this study were acquired by the University. A perfused fresh cadaveric model was created using a gelatin and dye mixture in a specific injection protocol in order to increase the visibility and realism of perforating vessels, as well as major vessels. A questionnaire was distributed amongst 50 trainees in order to assess benefit of the model. Specifically, confidence, operative skills, and transferable procedural-based learning were assessed.
Results: Training with this cadaveric model resulted in a statistically significant improvement in self-reported confidence ( < 0.005) and prepared trainees for unsupervised bench work ( < 0.005). Respondents felt that the injected model allowed easier identification of vessels and ultimately increased the similarity to real-time operating. Our analysis showed it cost £10.78 and took 30 min.
Conclusions: Perfusion of cadaveric limbs is both cost- and time-effective, with significant improvement in training potential. The model is easily reproducible and could be a valuable resource in surgical training for several disciplines.Level of Evidence: Not ratable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6061477 | PMC |
http://dx.doi.org/10.1007/s00238-018-1414-3 | DOI Listing |