98%
921
2 minutes
20
Induced pluripotent stem cell (iPSC)-derived hematopoietic cells represent a highly attractive source for cell and gene therapy. Given the longevity, plasticity, and self-renewal potential of distinct macrophage subpopulations, iPSC-derived macrophages (iPSC-Mφ) appear of particular interest in this context. We here evaluated the airway residence, plasticity, and therapeutic efficacy of iPSC-Mφ in a murine model of hereditary pulmonary alveolar proteinosis (herPAP). We demonstrate that single pulmonary macrophage transplantation (PMT) of 2.5-4 × 10 iPSC-Mφ yields efficient airway residence with conversion of iPSC-Mφ to an alveolar macrophage (AMφ) phenotype characterized by a distinct surface marker and gene expression profile within 2 months. Moreover, PMT significantly improves alveolar protein deposition and other critical herPAP disease parameters. Thus, our data indicate iPSC-Mφ as a source of functional macrophages displaying substantial plasticity and therapeutic potential that upon pulmonary transplantation will integrate into the lung microenvironment, adopt an AMφ phenotype and gene expression pattern, and profoundly ameliorate pulmonary disease phenotypes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6135208 | PMC |
http://dx.doi.org/10.1016/j.stemcr.2018.07.006 | DOI Listing |
Immunity
September 2025
Institute for Infection Control and Prevention, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center and Fa
Resident macrophages play integral roles in maintaining tissue homeostasis and function. In the skin, prenatally seeded, specialized macrophages patrol sensory nerves and contribute to their regeneration after injury. However, mechanisms underlying the long-lasting postnatal commitment of these nerve-associated macrophages remain largely elusive.
View Article and Find Full Text PDFJ Neurochem
September 2025
Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russian Federation.
Mutations in the GBA1 gene, encoding the lysosomal enzyme glucocerebrosidase (GCase), and the LRRK2 gene, encoding leucine-rich repeat kinase 2 (LRRK2) are the most common genetic risk factors for Parkinson's disease (PD). The potential use of LRRK2 inhibitors for treating not only LRRK2-associated PD (LRRK2-PD) but also GBA1-associated PD (GBA1-PD) is currently under discussion. In the present study, we aimed to evaluate whether LRRK2 inhibition affects lysosomal hydrolase enzymatic activities, autophagy, and alpha-synuclein levels in various cell types derived from LRRK2-PD and GBA1-PD patients, including macrophages derived from peripheral blood mononuclear cells (PBMC-derived macrophages), dopaminergic (DA) neurons derived from induced pluripotent stem cells (iPSC-derived DA neurons), and SH-SY5Y cells.
View Article and Find Full Text PDFNat Commun
August 2025
Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
Many disease-associated variants are thought to be regulatory but are not present in existing catalogues of expression quantitative trait loci (eQTL). We hypothesise that these variants may regulate expression in specific biological contexts, such as stimulated immune cells. Here, we used human iPSC-derived macrophages to map eQTLs across 24 cellular conditions.
View Article and Find Full Text PDFNeurobiol Dis
August 2025
Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Amherst, MA, USA. Electronic address:
Microglia are the tissue resident macrophages of the brain and their contribution to tau pathology progression remains to be fully understood. In this study, we developed a quantitative platform to elucidate the processing of extracellular tau within human induced pluripotent stem cell (iPSC)-derived microglia. We show that iPSC-derived microglia internalize monomeric and fibrillar tau through different cellular mechanisms and with different clearance kinetics.
View Article and Find Full Text PDFJ Immunol
August 2025
Boehringer Ingelheim Pharma, Ridgefield, CT 06877, United States.
Human macrophages differ from their mouse counterparts in multiple metabolic pathways, surface protein expression, and transcription factor biology. Monocyte-derived macrophages (MDMs) from blood are generally used to study human macrophage biology in vitro. However, the use of MDMs as a human macrophage model is limited by donor-to-donor variability, total cell availability, preactivation effects, and relative resistance to genetic manipulation.
View Article and Find Full Text PDF