Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Shifts in vegetation phenology are a key example of the biological effects of climate change. However, there is substantial uncertainty about whether these temperature-driven trends will continue, or whether other factors-for example, photoperiod-will become more important as warming exceeds the bounds of historical variability. Here we use phenological transition dates derived from digital repeat photography to show that experimental whole-ecosystem warming treatments of up to +9 °C linearly correlate with a delayed autumn green-down and advanced spring green-up of the dominant woody species in a boreal Picea-Sphagnum bog. Results were confirmed by direct observation of both vegetative and reproductive phenology of these and other bog plant species, and by multiple years of observations. There was little evidence that the observed responses were constrained by photoperiod. Our results indicate a likely extension of the period of vegetation activity by 1-2 weeks under a 'CO stabilization' climate scenario (+2.6 ± 0.7 °C), and 3-6 weeks under a 'high-CO emission' scenario (+5.9 ± 1.1 °C), by the end of the twenty-first century. We also observed severe tissue mortality in the warmest enclosures after a severe spring frost event. Failure to cue to photoperiod resulted in precocious green-up and a premature loss of frost hardiness, which suggests that vulnerability to spring frost damage will increase in a warmer world. Vegetation strategies that have evolved to balance tradeoffs associated with phenological temperature tracking may be optimal under historical climates, but these strategies may not be optimized for future climate regimes. These in situ experimental results are of particular importance because boreal forests have both a circumpolar distribution and a key role in the global carbon cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-018-0399-1DOI Listing

Publication Analysis

Top Keywords

vegetation activity
8
spring frost
8
ecosystem warming
4
warming extends
4
vegetation
4
extends vegetation
4
activity heightens
4
heightens vulnerability
4
vulnerability cold
4
cold temperatures
4

Similar Publications

India's energy demand increased by 7.3% in 2023 compared to 2022 (5.6%), primarily met by coal-based thermal power plants (TPPs) that contribute significantly to greenhouse gas emissions.

View Article and Find Full Text PDF

Although generally considered harmless commensals or beneficial probiotics, species can act as opportunistic pathogens under certain clinical conditions. We describe a case of high-grade bacteremia in a 59-year-old man with a history of aortic root dilation status post Bentall procedure and bioprosthetic aortic valve replacement. The suspected source was recent dental instrumentation.

View Article and Find Full Text PDF

Prospects for silvicultural enhancement of fire resistance in mesic westside forests of the Pacific Northwest.

PLoS One

September 2025

United States Department of Agriculture Forest Service, Pacific Northwest Research Station, Portland Oregon, United States of America.

Increasing wildfire activity in mesic, temperate Pacific Northwest forests west of the Cascade Range crest has stimulated interest in understanding whether alternative forest management practices could reduce risk of stand-replacing fire. To explore how management can enhance fire resistance in these forests and assess tradeoffs among resistance enhancement, carbon sequestration and storage, and economic returns, we conducted 40-year simulations of stand development with BioSum, a framework for conducting landscape analysis with the Forest Vegetation Simulator (FVS), utilizing a statistically representative and spatially balanced sample of Forest Inventory and Analysis (FIA) plots. Simulation outcomes under business-as-usual silviculture were contrasted with fire-aware silviculture, and treatment optimization logic was developed and applied to represent landscape-scale outcomes under business-as-usual and fire-focused management scenarios.

View Article and Find Full Text PDF

Tropical rainforests support critical biogeochemical cycles regulated by complex plant-soil microbial interactions but are threatened by global change. Much of the uniquely biodiverse and carbon rich forest on Borneo has been lost through extensive conversion to monoculture plantation, and a significant proportion of the remaining forest has been heavily modified by selective logging. Ecological restoration of tropical forest aims to return forests to a near pristine state, but restoration initiatives are hindered by limited understanding of the underpinning plant-soil feedbacks, and impacts on soil microbial communities are unresolved.

View Article and Find Full Text PDF

Chromosome-scale genome assembly of Sauvagesia rhodoleuca (Ochnaceae) provides insights into its genome evolution and demographic history.

DNA Res

September 2025

Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.

Sauvagesia rhodoleuca is an endangered species endemic to southern China. Due to human activities, only six fragmented populations remain in Guangdong and Guangxi. Despite considerable conservation efforts, its demographic history and evolution remain poorly understood, particularly from a genomic perspective.

View Article and Find Full Text PDF