98%
921
2 minutes
20
Lanthanide (Ln) oxide clusters have complex electronic structures arising from the partially occupied Ln 4f subshell. New anion photoelectron (PE) spectra of SmCeO (x = 0-3; y = 2-4) along with supporting results of density functional theory (DFT) calculations suggest interesting x and y-dependent Sm 4f subshell occupancy with implications for Sm-doped ionic conductivity of ceria, as well as the overall electronic structure of the heterometallic oxides. Specifically, the Sm centers in the heterometallic species have higher 4f subshell occupancy than the homonuclear SmO/SmO clusters. The higher 4f subshell occupancy both weakens Sm-O bonds and destabilizes the 4f subshell relative to the predominantly O 2p bonding orbitals in the clusters. Parallels between the electronic structures of these small cluster systems with bulk oxides are explored. In addition, unusual changes in the excited state transition intensities, similar to those observed previously in the PE spectra of SmO and SmO [J. O. Kafader et al., J. Chem. Phys. 146, 194310 (2017)], are also observed in the relative intensities of electronic transitions to excited neutral state bands in the PE spectra of SmCeO (x = 1-3; y = 2, 4). The new spectra suggest that the effect is enhanced with lower oxidation states and with an increasing number of Sm atoms, implying that the prevalence of electrons in the diffuse Sm 6s-based molecular orbitals and a more populated 4f subshell both contribute to this phenomenon. Finally, this work identifies challenges associated with affordable DFT calculations in treating the complex electronic structures exhibited by these systems, including the need for a more explicit treatment of strong coupling between the neutral and PE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5043490 | DOI Listing |
Adv Sci (Weinh)
September 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
Carbonized wood has great potential as a self-supported electrode for energy storage/conversion applications. However, developing efficient and economical bifunctional electrodes by customizing the surface structure remains a challenge. This study proposes a novel multifunctional electrode design strategy, using N/P co-doped carbonized wood (NPCW) as carriers and in situ grows copper nanoparticles (Cu NPs) as nucleation centers to induce vertical growth of CuCo-layered double hydroxid (LDH) nanosheets along the substrate.
View Article and Find Full Text PDFGenet Med
September 2025
Division of Medical Genetics, University of Washington School of Medicine.
Purpose: The fourth phase of the Electronic Medical Records and Genome Network (eMERGE4) is testing the return of 10 polygenic risk scores (PRS) across multiple clinics. Understanding the perspectives of health-system leaders and frontline clinicians can inform plans for implementation of PRS.
Methods: Fifteen health-system leaders and 20 primary care providers (PCPs) took part in semi-structured interviews.
Inorg Chem
September 2025
Department of Chemistry and Chemical Engineering, Heze University, Heze, Shandong 274015, China.
Transition metal (TM)-doped silicon clusters represent critical model systems for understanding nanoscale hybridization and stability mechanisms. This study provides a comprehensive analysis of structural evolution, electronic properties, and thermodynamic stability in ruthenium-doped silicon clusters (RuSi̅, = 7-11) through integrated experimental and computational approaches. Anion photoelectron spectroscopy combined with density functional theory (DFT/B3LYP), coupled-cluster theory [CCSD(T)], and bonding analyses (AdNDP, NICS, ACID) reveals charge-state-dependent structural transitions, with full Ru encapsulation emerging at = 10 for anions and = 11 for neutrals.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29a, Rostock 18059, Germany.
Metal-organic frameworks (MOFs) are transformative platforms for heterogeneous catalysis, but distinguishing atomically dispersed metal sites from subnanometric clusters remains a major challenge. This often demands the integration of multiple characterization techniques, many of which either lack the resolving power to distinguish active sites from their surrounding environments (e.g.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Department of Physics, Mizoram University, Aizawl-796004, India,.
It is anticipated that wide-bandgap semiconductors (WBGSs) would be useful materials for energy production and storage. A well-synthesized, yet scarcely explored, diamond-like quaternary semiconductor LiZnGeS has been considered for this work. Herein, we have employed two well-known functionals GGA and mGGA within a framework of density functional theory (DFT).
View Article and Find Full Text PDF