Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) in vapor-phase is economically more viable route if compared to reaction in liquid-phase. To improve the GVL yield in the vapor-phase reaction, the optimization of nickel modified zeolite as bi-functional catalyst (Ni/HZSM-5) was studied. Ni/HZSM-5 materials with fixed Al/Si molar ratio of 0.04 and different nominal Ni/Si molar ratios (from 0.01 to 0.05) were synthesized without the use of organic template and with the most affordable sources of silica and alumina. Materials were characterized by X-ray powder diffraction, SEM-EDX, TEM-EDX, pyridine TPD and DRIFTS, H-TPR, N physisorption and isoelectric point. In the synthesized materials, 61-83% of nickel is present as bulk NiO and increases with nickel content. Additionally, in all catalysts, a small fraction of Ni which strongly interacts with the zeolite support was detected (10-18%), as well as Ni acting as charge compensating cations for Brønsted acid sites (7-21%). Increasing the nickel content in the catalysts leads to a progressive decrease of Brønsted acid sites (BAS) and concomitant increase of Lewis acid sites (LAS). When BAS/LAS is approaching to 1 and at the same time the amount of NiO reducible active sites is around 80%, the bi-functional Ni/HZSM-5-3 catalyst (Ni/Al = 0.59) leads to 99% conversion of LA and 100% selectivity to GVL at 320°C. This catalyst also shows stable levulinic acid hydrogenation to GVL in 3 reaction cycles conducted at 320°C. The concerted action of the following active sites in the catalyst is a key element for its optimized performance: (1) Ni metallic active sites with hydrogenation effect, (2) Lewis acid sites with dehydration effect, and (3) nickel aluminate sites with synergetic and stabilizing effects of all active sites in the catalyst.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6056673 | PMC |
http://dx.doi.org/10.3389/fchem.2018.00285 | DOI Listing |