Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Thymosin alpha 1 (Tα1) is a well-recognized immune response modulator in a wide range of disorders, particularly infections and cancer. The bioinformatic analysis of public databases allows drug repositioning, predicting a new potential area of clinical intervention. We aimed to decipher the cellular network induced by Tα1 treatment to confirm present use and identify new potential clinical applications.
Research Design And Methods: We used the transcriptional profile of human peripheral blood mononuclear cells treated in vitro with Tα1 to perform the enrichment network analysis by the Metascape online tools and the disease enrichment analysis by the DAVID online tool.
Results: Networked cellular responses reflected Tα1 regulated biological processes including immune and metabolic responses, response to compounds and oxidative stress, ion homeostasis, peroxisome biogenesis and drug metabolic process. Beyond cancer and infections, the analysis evidenced the association with disorders such as kidney chronic failure, diabetes, cardiovascular, chronic respiratory, neuropsychiatric, neurodegenerative and autoimmune diseases.
Conclusions: In addition to the known ability to promote immune response pathways, the network enrichment analysis demonstrated that Tα1 regulates cellular metabolic processes and oxidative stress response. Notable, the analysis highlighted the association with several diseases, suggesting new translational implication of Tα1 treatment in pathological conditions unexpected until now.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14712598.2018.1474198 | DOI Listing |