Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Altered inhibition-excitation balance is implicated in brain aging. We hypothesized that expression of 14 genes encoding proteins localized to synapses or interneurons would show age-related changes relative to 1 another in postmortem tissue from the prefrontal cortex of 37 individuals (18-78 years) and that synaptic or interneuron markers would be differentially correlated with human brain volumes across aging. The majority of genes examined were differentially expressed with age, most being downregulated. Expression of 3 interneuron-related genes was significantly negatively associated with age (calbindin, somatostatin, cholecystokinin), whereas 3 synapse-related genes showed significant age-related expression change (PSD95, GAP43, VGLUT1). On covarying for 2 glial markers (GFAP, IBA1), all 3 interneuron genes and 1 synaptic gene (Growth-associated protein 43) remained significant. Two genes were significantly associated with total brain volume (calbindin, complexin 2) and a marker of synaptic density (synaptophysin) was significantly associated with cortical gray matter volume. Age-related change in expression of genes involved in maintenance of inhibition-excitation balance and regulation of prefrontocortical network dynamics suggests these pathways may contribute to brain aging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neurobiolaging.2018.06.011 | DOI Listing |