98%
921
2 minutes
20
Purpose: RPE cell transplantation as a potential treatment for AMD has been extensively investigated; however, in AMD, ultrastructural damage affects both the RPE and its underlying matrix support, the Bruch's membrane (BrM). An RPE monolayer supported by a surrogate scaffold could thus provide a more effective approach to cell-based therapy for AMD. Toward this goal, we aimed to establish a functional human induced pluripotent stem cell-derived (hiPSC)-RPE monolayer on a Bombyx mori silk fibroin (BMSF) scaffold.
Methods: RPE differentiated from five distinct hiPSC lines were cultured on BMSF membrane coated with extracellular matrix (ECM, COL1), and either regular tissue culture plastic or Transwell coated with ECM (LAM-TCP). Morphologic, gene and protein expression, and functional characteristics of the hiPSC-RPE cultured on different membranes were compared in longitudinal experiments spanning 1 day to ≥3 months.
Results: The hiPSC-RPE monolayers on ECM-coated BMSF and TCP could be maintained in culture for ≥3 months and displayed RPE-characteristic morphology, pigmentation, polarity, and expression of RPE signature genes and proteins. Furthermore, hiPSC-RPE on both ECM-coated BMSF and TCP displayed robust expression and secretion of several basement membrane proteins. Importantly, hiPSC-RPE cells on COL1-BMSF and LAM-TCP showed similar efficacy in the phagocytosis and degradation of photoreceptor outer segments.
Conclusions: A biomaterial scaffold manufactured from silk fibroin supports the maturation and long-term survival of a functional hiPSC-RPE monolayer. This has significant implications for both in vitro disease modeling and in vivo cell replacement therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5989661 | PMC |
http://dx.doi.org/10.1167/iovs.17-23157 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qing
Silk fibroin (SF)-based flexible electronic/photonic materials have gained great attention in wearable devices and soft sensors. However, it remains challenging to understand the molecular interaction mechanisms and subsequently fabricate SF-based flexible materials that exhibit fluorescence, humidity sensitivity, and conductivity properties. In this study, by incorporating lanthanide europium ion (Eu), the design and fabrication of a flexible, fluorescent, and conductive SF membrane was proposed.
View Article and Find Full Text PDFACS Nano
September 2025
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Dev
Hyperglycemia-induced oxidative stress and inflammation critically impair diabetic bone defect repair. Here, a radially oriented microchannel scaffold (D-GSH@QZ) was developed via a directional freezing technique integrated with photo-cross-linking strategies. The scaffold was fabricated from gelatin methacryloyl, silk fibroin methacryloyl, and nanohydroxyapatite (HAp) to mimic the natural bone matrix, while incorporating quercetin-loaded ZIF-8 nanoparticles (Qu@ZIF-8) for pathological microenvironment modulation.
View Article and Find Full Text PDFACS Omega
September 2025
Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho 94000, Vietnam.
Anthocyanins, natural antioxidants found in L. flowers, exhibit instability when exposed to high temperatures. Therefore, to heat-protect the anthocyanins, this investigation produced extract-loaded polymeric (polyethylenimine (PEI) or poly-(vinyl alcohol) (PVA)) functionalized silk fibroin nanoparticles using a green/sustainable process.
View Article and Find Full Text PDFACS Nano
September 2025
School of Medicine, Nankai University, Tianjin 300071, China.
In situ articular cartilage (AC) regeneration is a meticulously coordinated process. Microfracture has been the most extensive clinical approach in AC repair, but it faces challenges such as matrix degradation, generation, and remodeling within a local inflammatory microenvironment. So far, it remains a challenge to establish a multistage regulatory framework for coordinating these cellular events, particularly the immune response and chondrocyte proliferation in microfracture-mediated AC repair microenvironments, which is crucial for promoting AC regeneration quality.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
Famotidine (FMD) is an H₂-receptor antagonist with limited oral bioavailability and a short plasma half-life (2.5-4 h). Silk fibroin-chitosan nanoparticles (FBN-CS-NPs) represent a novel nanocarrier approach for treating peptic ulcers, combining biocompatibility, mucoadhesiveness, and pH-sensitive release.
View Article and Find Full Text PDF