Cobalt(ii)-catalyzed regioselective C-H halogenation of anilides.

Org Biomol Chem

College of Chemical Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing, 210094, China.

Published: August 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A cobalt-catalyzed regioselective C-H halogenation methodology is reported herein. The highlight of this work is the highly selective C-H functionalization of anilides, which results in high-yielding, versatile, and practical halogenated products. Thereby, brominations, chlorinations and iodinations of many electron-rich and electron-deficient anilides were achieved in a highly selective fashion. Mechanistic studies with respect to the pathway of the reaction are also described.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8ob01448eDOI Listing

Publication Analysis

Top Keywords

regioselective c-h
8
c-h halogenation
8
highly selective
8
cobaltii-catalyzed regioselective
4
halogenation anilides
4
anilides cobalt-catalyzed
4
cobalt-catalyzed regioselective
4
halogenation methodology
4
methodology reported
4
reported highlight
4

Similar Publications

Herein, we report an Ir(III)-catalyzed regioselective C-H acylmethylation of indolizines with β-ketosulfoxonium ylides, enabling the efficient synthesis of C3-functionalized indolizine derivatives. By modifying the reaction conditions, a controllable Ir(III)-catalyzed dicarbonylation of the same substrates was also achieved. In this transformation, β-ketosulfoxonium ylides serve as a rare alternative to conventional oxophenacyl halides.

View Article and Find Full Text PDF

BN-fused aromatic compounds have garnered significant attention due to their unique electronic structures and exceptional photophysical properties, positioning them as highly promising candidates for applications in organic optoelectronics. However, the regioselective synthesis of BN isomers remains a formidable challenge, primarily stemming from the difficulty in precisely controlling reaction sites, limiting structural diversity and property tunability. Herein, we propose a regioselective synthetic strategy that employs 2,1-BN-naphthalene derivatives, wherein selective activation of N-H and C-H bonds is achieved in conjunction with -halogenated phenylboronic acids.

View Article and Find Full Text PDF

Radical cascade cyclization of alkenes involving the insertion of sulfur dioxide has proven to be a promising tool to access sulfonylnated heterocycle compounds, whereas cyclization of unactivated alkenes has been much less explored. Here, we developed a three-component cascade of unactive alkenes with sulfur dioxide and aryldiazonium tetrafluoroborates to generate sulfonylated tetrahydropyridines and azepines via the cleavage of alkenyl C-H bonds. Moreover, this protocol exhibited excellent chemical and regioselectivity and compatibility with broad functional groups.

View Article and Find Full Text PDF

Transformation of allylic C-H bonds into C-C bonds in a regioselective manner represents a powerful approach to generating complex molecules from simple starting materials. Herein, we report a protocol for net δ-C-H alkylation of allyl alcohols involving a sequential azo-ene reaction and an attendant Ni-catalyzed allylic substitution with Grignard reagents. This two-step strategy enables the regioselective alkylation of distal C-H bonds, a transformation that remains challenging via direct approaches under transition-metal catalysis.

View Article and Find Full Text PDF

In this work, we offer a method for selectively alkenylating C5-H and then annulating indole-4-carboxylic acid derivatives using ruthenium(ii) as a catalyst. Our approach facilitates the effective formation of fused lactone structures by employing a weakly coordinating carboxylic acid group at the C4 position as a guiding group. The reaction process starts with an alkenylation at the C5 position of the indole ring, followed by an intramolecular Michael addition to produce annulated lactones in high yields.

View Article and Find Full Text PDF