A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Preliminary Study of Chronic Liver Classification on Ultrasound Images Using an Ensemble Model. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chronic liver diseases are fifth leading cause of fatality in developing countries. Their early diagnosis is extremely important for timely treatment and salvage life. To examine abnormalities of liver, ultrasound imaging is the most frequently used modality. However, the visual differentiation between chronic liver and cirrhosis, and presence of heptocellular carcinomas (HCC) evolved over cirrhotic liver is difficult, as they appear almost similar in ultrasound images. In this paper, to deal with this difficult visualization problem, a method has been developed for classifying four liver stages, that is, normal, chronic, cirrhosis, and HCC evolved over cirrhosis. The method is formulated with selected set of "handcrafted" texture features obtained after hierarchal feature fusion. These multiresolution and higher order features, which are able to characterize echotexture and roughness of liver surface, are extracted by using ranklet, gray-level difference matrix and gray-level co-occurrence matrix methods. Thereafter, these features are applied on proposed ensemble classifier that is designed with voting algorithm in conjunction with three classifiers, namely, k-nearest neighbor (k-NN), support vector machine (SVM), and rotation forest. The experiments are conducted to evaluate the (a) effectiveness of "handcrafted" texture features, (b) performance of proposed ensemble model, (c) effectiveness of proposed ensemble strategy, (d) performance of different classifiers, and (e) performance of proposed ensemble model based on Convolutional Neural Networks (CNN) features to differentiate four liver stages. These experiments are carried out on database of 754 segmented regions of interest formed by clinically acquired ultrasound images. The results show that classification accuracy of 96.6% is obtained by use of proposed classifier model.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0161734618787447DOI Listing

Publication Analysis

Top Keywords

proposed ensemble
16
chronic liver
12
ultrasound images
12
ensemble model
12
liver
8
hcc evolved
8
liver stages
8
"handcrafted" texture
8
texture features
8
performance proposed
8

Similar Publications