A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Integrating Metal-Catalyzed C-H and C-O Functionalization To Achieve Sterically Controlled Regioselectivity in Arene Acylation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

One major goal of organometallic chemists is the direct functionalization of the bonds most recurrent in organic molecules: C-H, C-C, C-O, and C-N. An even grander challenge is C-C bond formation when both precursors are of this category. Parallel to this is the synthetic goal of achieving reaction selectivity that contrasts with conventional methods. Electrophilic aromatic substitution (EAS) via Friedel-Crafts acylation is the most renowned method for the synthesis of aryl ketones, a common structural motif of many pharmaceuticals, agrochemicals, fragrances, dyes, and other commodity chemicals. However, an EAS synthetic strategy is only effective if the desired site for acylation is in accordance with the electronic-controlled regioselectivity of the reaction. Herein we report steric-controlled regioselective arene acylation with salicylate esters via iridium catalysis to access distinctly substituted benzophenones. Experimental and computational data indicate a unique reaction mechanism that integrates C-O activation and C-H activation with a single iridium catalyst without an exogenous oxidant or base. We disclose an extensive exploration of the synthetic scope of both the arene and the ester components, culminating in the concise synthesis of the potent anticancer agent hydroxyphenstatin.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.8b06476DOI Listing

Publication Analysis

Top Keywords

arene acylation
8
integrating metal-catalyzed
4
metal-catalyzed c-h
4
c-h c-o
4
c-o functionalization
4
functionalization achieve
4
achieve sterically
4
sterically controlled
4
controlled regioselectivity
4
regioselectivity arene
4

Similar Publications