Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metastasis is the major cause of cancer death. The role of circulating tumor cells (CTCs) in promoting cancer metastasis, in which lung colonization by CTCs critically contributes to early lung metastatic processes, has been vigorously investigated. As such, animal models are the only approach that captures the full systemic process of metastasis. Given that problems occur in previous experimental designs for examining the contributions of CTCs to blood vessel extravasation, we established an in vivo lung colonization assay in which a long-term-fluorescence cell-tracer, carboxyfluorescein succinimidyl ester (CFSE), was used to label suspended tumor cells and lung perfusion was performed to clear non-specifically trapped CTCs prior to lung removal, confocal imaging, and quantification. Polymeric fibronectin (polyFN) assembled on CTC surfaces has been found to mediate lung colonization in the final establishment of metastatic tumor tissues. Here, to specifically test the requirement of polyFN assembly on CTCs for lung colonization and extravasation, we performed short term lung colonization assays in which suspended Lewis lung carcinoma cells (LLCs) stably expressing FN-shRNA (shFN) or scramble-shRNA (shScr) and pre-labeled with 20 μM of CFSE were intravenously inoculated into C57BL/6 mice. We successfully demonstrated that the abilities of shFN LLC cells to colonize the mouse lungs were significantly diminished in comparison to shScr LLC cells. Therefore, this short-term methodology may be widely applied to specifically demonstrate the ability of CTCs within the circulation to colonize the lungs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6101755PMC
http://dx.doi.org/10.3791/56761DOI Listing

Publication Analysis

Top Keywords

lung colonization
24
lung
10
colonization assay
8
circulating tumor
8
tumor cells
8
llc cells
8
colonization
6
ctcs
6
cells
5
establishment lung
4

Similar Publications

pH-responsive activation of Tet-On inducible CAR-T cells enables spatially selective treatment of targeted solid tumors at reduced safety risk.

Natl Sci Rev

September 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.

Chimeric antigen receptor T (CAR-T)-cell therapy is a promising resolution for solid tumors, but its corresponding clinical translation has been hindered by unsatisfactory therapeutic potency and severe cytokine release syndrome. Herein, tetracycline (Tet)-On inducible human epidermal growth factor receptor 1 (HER1)-targeted CAR-T (Tet-HER1-CAR-T) cells were engineered to enable spatially selective activation at tumor sites by doxycycline (Doxy), which is delivered by pH-responsive stealth liposomal calcium carbonate nanoparticles (Doxy@CaCO-PEG). Compared with the intravenous administration of conventional HER1-CAR-T cells and Tet-HER1-CAR-T cells activated by free Doxy, concurrent intravenous administration of Tet-HER1-CAR-T cells and Doxy@CaCO-PEG leads to the localized tumor activation of Tet-HER1-CAR-T cells and reduced systemic secretion of inflammatory cytokines.

View Article and Find Full Text PDF

The multi-kingdom cancer microbiome.

Nat Microbiol

September 2025

Joan and Sanford I. Weill Department of Medicine, Gastroenterology and Hepatology Division, Weill Cornell Medicine, New York, NY, USA.

Microbial influence on cancer development and therapeutic response is a growing area of cancer research. Although it is known that microorganisms can colonize certain tissues and contribute to tumour initiation, the use of deep sequencing technologies and computational pipelines has led to reports of multi-kingdom microbial communities in a growing list of cancer types. This has prompted discussions on the role and scope of microbial presence in cancer, while raising the possibility of microbiome-based diagnostic, prognostic and therapeutic tools.

View Article and Find Full Text PDF

Background: Patients with chronic lung diseases often suffer from pulmonary aspergillosis, caused by Aspergillus fumigatus (AF). Alveolar macrophages play a key role in the initial immune response to AF. Azithromycin (AZM), commonly known for its immunomodulatory properties in reducing exacerbations and improving lung function, has mixed effects on the development of aspergillosis.

View Article and Find Full Text PDF

Cystic Fibrosis (CF) is a multiorgan disease caused by mutations in the gene, leading to chronic pulmonary infections and hyperinflammation. Among pathogens colonizing the CF lung, is predominant, infecting over 50% of adults with CF, and becoming antibiotic-resistant over time. Current therapies for CF, while providing tremendous benefits, fail to eliminate persistent bacterial infections, chronic inflammation, and irreversible lung damage, necessitating novel therapeutic strategies.

View Article and Find Full Text PDF

Osteosarcoma (OS), the most prevalent primary bone malignancy in adolescents, is characterized by aggressive progression and early metastasis. However, the epigenetic drivers of its metastatic heterogeneity remain poorly understood. Herein, we integrated bulk DNA methylation profiling and single-cell RNA sequencing (scRNA-seq) to elucidate the epigenetic mechanisms driving OS metastatic heterogeneity.

View Article and Find Full Text PDF