Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
MicroRNAs are tiny molecules that strikingly change their expression patterns and distribution during somatic embryogenesis induction and plant regeneration. It is of great relevance to analyze simultaneously the microRNA and target mRNA fates to understand their role in promoting an adequate embryogenic response to external stimulus in the regenerating tissues. Here we describe a method to evaluate the expression patterns of miRNAs or other sRNAs and their target regulation in distinctive tissues observed during maize plant regeneration. Key features of the method include the classification of regenerating plant material with reproducibly distinctive morphological characteristics and a purification procedure that renders high-quality small and large RNA separation from the same sample for qRT-PCR analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-8594-4_28 | DOI Listing |