98%
921
2 minutes
20
Bronchopulmonary dysplasia (BPD), the most common complication of extreme preterm birth, can be caused by oxygen-related lung injury and is characterized by impaired alveolar and vascular development. Mesenchymal stromal cells (MSCs) have lung protective effects. Conversely, BPD is associated with increased MSCs in tracheal aspirates. We hypothesized that endogenous lung (L-)MSCs are perturbed in a well-established oxygen-induced rat model mimicking BPD features. Rat pups were exposed to 21% or 95% oxygen from birth to postnatal day 10. On day 12, CD146 L-MSCs were isolated and characterized according to the International Society for Cellular Therapy criteria. Epithelial and vascular repair potential were tested by scratch assay and endothelial network formation, respectively, immune function by mixed lymphocyte reaction assay. Microarray analysis was performed using the Affymetrix GeneChip and gene set enrichment analysis software. CD146 L-MSCs isolated from rat pups exposed to hyperoxia had decreased CD73 expression and inhibited lung endothelial network formation. CD146 L-MSCs indiscriminately promoted epithelial wound healing and limited T cell proliferation. Expression of potent antiangiogenic genes of the axonal guidance cue and CDC42 pathways was increased after in vivo hyperoxia, whereas genes of the anti-inflammatory Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and lung/vascular growth-promoting fibroblast growth factor (FGF) pathways were decreased. In conclusion, in vivo hyperoxia exposure alters the proangiogenic effects and FGF expression of L-MSCs. In addition, decreased CD73 and JAK/STAT expression suggests decreased immune function. L-MSC function may be perturbed and contribute to BPD pathogenesis. These findings may lead to improvements in manufacturing exogenous MSCs with superior repair capabilities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/scd.2017.0145 | DOI Listing |
Respir Res
November 2018
Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, 575 Children's Cross Road, Columbus, OH, USA.
Background: Hyperoxia is a frequently employed therapy for prematurely born infants, induces lung injury and contributes to development of bronchopulmonary dysplasia (BPD). BPD is characterized by decreased cellular proliferation, cellular migration, and failure of injury repair systems. Actin binding proteins (ABPs) such as VASP, cofilin1, and profilin1 regulate cell proliferation and migration via modulation of actin dynamics.
View Article and Find Full Text PDFStem Cells Dev
August 2018
1 Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Canada .
Bronchopulmonary dysplasia (BPD), the most common complication of extreme preterm birth, can be caused by oxygen-related lung injury and is characterized by impaired alveolar and vascular development. Mesenchymal stromal cells (MSCs) have lung protective effects. Conversely, BPD is associated with increased MSCs in tracheal aspirates.
View Article and Find Full Text PDFJ Vis Exp
June 2016
Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute; University of Ottawa; Children's Hospital of Eastern Ontario Research Institute.
Mesenchymal stromal cells (MSCs) are increasingly recognized for their therapeutic potential in a wide range of diseases, including lung diseases. Besides the use of bone marrow and umbilical cord MSCs for exogenous cell therapy, there is also increasing interest in the repair and regenerative potential of resident tissue MSCs. Moreover, they likely have a role in normal organ development, and have been attributed roles in disease, particularly those with a fibrotic nature.
View Article and Find Full Text PDFStem Cells Dev
January 2016
1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands .
Liver-derived multipotent stromal cells (L-MSCs) may prove preferable for treatment strategies of liver diseases, in comparison to the widely studied bone marrow-derived MSCs (BM-MSCs). Canines are a large animal model, in which the pathologies of liver diseases are similar to man. This study further promotes the implementation of canine models in MSC-based treatments of liver diseases.
View Article and Find Full Text PDFCytotherapy
January 2014
Queensland Eye Institute, South Brisbane, Queensland, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Austr
Background Aims: Mesenchymal stromal cells (MSCs) cultivated from the corneal limbus (L-MSCs) provide a potential source of cells for corneal repair. In the present study, we investigated the immunosuppressive properties of human L-MSCs and putative rabbit L-MSCs to develop an allogeneic therapy and animal model of L-MSC transplantation.
Methods: MSC-like cultures were established from the limbal stroma of human and rabbit (New Zealand white) corneas using either serum-supplemented medium or a commercial serum-free MSC medium (MesenCult-XF Culture Kit; Stem Cell Technologies, Melbourne, Australia).