Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Somatic mutations in the isocitrate dehydrogenase 2 gene (IDH2) contribute to the pathogenesis of acute myeloid leukaemia (AML) through the production of the oncometabolite 2-hydroxyglutarate (2HG). Enasidenib (AG-221) is an allosteric inhibitor that binds to the IDH2 dimer interface and blocks the production of 2HG by IDH2 mutants. In a phase I/II clinical trial, enasidenib inhibited the production of 2HG and induced clinical responses in relapsed or refractory IDH2-mutant AML. Here we describe two patients with IDH2-mutant AML who had a clinical response to enasidenib followed by clinical resistance, disease progression, and a recurrent increase in circulating levels of 2HG. We show that therapeutic resistance is associated with the emergence of second-site IDH2 mutations in trans, such that the resistance mutations occurred in the IDH2 allele without the neomorphic R140Q mutation. The in trans mutations occurred at glutamine 316 (Q316E) and isoleucine 319 (I319M), which are at the interface where enasidenib binds to the IDH2 dimer. The expression of either of these mutant disease alleles alone did not induce the production of 2HG; however, the expression of the Q316E or I319M mutation together with the R140Q mutation in trans allowed 2HG production that was resistant to inhibition by enasidenib. Biochemical studies predicted that resistance to allosteric IDH inhibitors could also occur via IDH dimer-interface mutations in cis, which was confirmed in a patient with acquired resistance to the IDH1 inhibitor ivosidenib (AG-120). Our observations uncover a mechanism of acquired resistance to a targeted therapy and underscore the importance of 2HG production in the pathogenesis of IDH-mutant malignancies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6121718PMC
http://dx.doi.org/10.1038/s41586-018-0251-7DOI Listing

Publication Analysis

Top Keywords

acquired resistance
12
production 2hg
12
dimer-interface mutations
8
binds idh2
8
idh2 dimer
8
idh2-mutant aml
8
mutations occurred
8
r140q mutation
8
mutation trans
8
2hg production
8

Similar Publications

[Research status and future direction of irreversible EGFR-TKI in non-small cell lung cancer].

Zhonghua Jie He He Hu Xi Za Zhi

September 2025

Department of nursing, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China.

Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI) are important treatments for EGFR mutant non-small cell lung cancer (NSCLC). However, the first and second generation EGFR-TKI face clinical limitations due to acquired resistance, such as the T790M mutation. Irreversible EGFR-TKI can significantly prolong the survival of patients by enhancing the inhibition of drug-resistant mutations through the covalent binding mechanism.

View Article and Find Full Text PDF

Severe pneumonia, as a critical and prevalent condition of the respiratory system, poses a significant threat to patient survival and health outcomes. This article focuses on the similarities and differences between community-acquired pneumonia (CAP) and hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP). There is significant divergence in the predominant pathogens between severe community-acquired pneumonia (SCAP) and HAP/VAP.

View Article and Find Full Text PDF

vtRNA1-1 drives regorafenib resistance by sustaining cancer stemness via impaired autophagy and altered svRNA biogenesis.

Int J Biol Macromol

September 2025

Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai, 200080, PR China; Shanghai Eye Diseases Prevention &Treatment Center/Shanghai Eye Hospital, School of Medicine, Tongji University, PR China. Electronic address

While vault RNA1-1 (vtRNA1-1) has been implicated in tumor biology, its specific role in cancer stemness and regorafenib resistance remains unexplored. In this study, we identify vtRNA1-1 as a critical regulator of cancer stemness and chemoresistance in Hepatocellular carcinoma (HCC). vtRNA1-1 enhances stemness properties by modulating the nuclear accumulation of Nanog, a core transcription factor.

View Article and Find Full Text PDF

The MET receptor tyrosine kinase is a pivotal regulator of cellular survival, motility, and proliferation. Mutations leading to skipping of exon 14 (METΔex14) within the juxtamembrane domain of MET impair receptor degradation and prolong oncogenic signaling, contributing significantly to tumor progression across multiple cancer types. METΔex14 mutations are associated with aggressive clinical behavior, therapeutic resistance, and poor outcomes.

View Article and Find Full Text PDF

Two recent Phase 3 trials demonstrated the efficacy of gepotidacin compared with nitrofurantoin to treat uncomplicated urinary tract infections (uUTIs) in females. Pretreatment urine specimens were obtained from all participants. Based on pooled trial data (treatment groups combined), central laboratory culture results identified 1,421 (45%) participants with ≥1 baseline qualifying (≥10 CFU/mL) uropathogen (i.

View Article and Find Full Text PDF