A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Regression analysis of gait parameters and mobility measures in a healthy cohort for subject-specific normative values. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Deviation in gait performance from normative data of healthy cohorts is used to quantify gait ability. However, normative data is influenced by anthropometry and such differences among subjects impede accurate assessment. De-correlation of anthropometry from gait parameters and mobility measures is therefore desirable.

Methods: 87 (42 male) healthy subjects varying form 21 to 84 years of age were assessed on gait parameters (cadence, ankle velocity, stride time, stride length) and mobility measures (the 3-meter/7-meter Timed Up-and-Go, 10-meter Walk Test). Multiple linear regression models were derived for each gait parameter and mobility measure, with anthropometric measurements (age, height, body mass, gender) and self-selected walking speed as independent variables. The resulting models were used to normalize the gait parameters and mobility measures. The normalization's capability in de-correlating data and reducing data dispersion were evaluated.

Results: Gait parameters were predominantly influenced by height and walking speed, while mobility measures were affected by age and walking speed. Normalization de-correlated data from anthropometric measurements from |rs| < 0.74 to |rs| < 0.23, and reduced data dispersion by up to 69%.

Conclusion: Normalization of gait parameters and mobility measures through linear regression models augment the capability to compare subjects with varying anthropometric measurements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6005486PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0199215PLOS

Publication Analysis

Top Keywords

gait parameters
24
mobility measures
24
parameters mobility
16
anthropometric measurements
12
walking speed
12
gait
9
normative data
8
subjects varying
8
linear regression
8
regression models
8

Similar Publications