98%
921
2 minutes
20
Wolbachia bacteria, vertically transmitted intracellular endosymbionts, are associated with two major host taxa in which they show strikingly different symbiotic modes. In some taxa of filarial nematodes, where Wolbachia are strictly obligately beneficial to the host, they show complete within- and among-species prevalence as well as co-phylogeny with their hosts. In arthropods, Wolbachia usually are parasitic; if beneficial effects occurs, they can be facultative or obligate, related to host reproduction. In arthropods, the prevalence of Wolbachia varies within and among taxa, and no co-speciation events are known. However, one arthropod species, the common bedbug Cimex lectularius was recently found to be dependent on the provision of biotin and riboflavin by Wolbachia, representing a unique case of Wolbachia providing nutritional and obligate benefits to an arthropod host, perhaps even in a mutualistic manner. Using the presence of presumably functional biotin gene copies, our study demonstrates that the obligate relationship is maintained at least in 10 out of 15 species of the genera Cimex and Paracimex. The remaining five species harboured Wolbachia as well, demonstrating the first known case of 100% prevalence of Wolbachia among higher arthropod taxa. Moreover, we show the predicted co-cladogenesis between Wolbachia and their bedbug hosts, also as the first described case of Wolbachia co-speciation in arthropods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5995804 | PMC |
http://dx.doi.org/10.1038/s41598-018-25545-y | DOI Listing |
SAR QSAR Environ Res
August 2025
Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India.
, a causative agent of lymphatic filariasis, relies on its endosymbiont for survival. MurE ligase, a key enzyme in peptidoglycan biosynthesis, serves as a promising drug target for anti-filarial therapy. In this study, we employed a hierarchical virtual screening pipeline to identify phytochemical inhibitors targeting the MurE enzyme of the endosymbiont of (MurE).
View Article and Find Full Text PDFPLoS Genet
September 2025
MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France.
Cytoplasmic Incompatibility (CI) causes embryonic lethality in arthropods, resulting in a significant reduction in reproductive success. In most cases, this reproductive failure is driven by Wolbachia endosymbionts through their cifA/cifB gene pair, whose products disrupts arthropod DNA replication during embryogenesis. While a cif pair has been considered a hallmark of Wolbachia, its presence and functional significance in other bacterial lineages remains poorly investigated.
View Article and Find Full Text PDFPLoS Pathog
September 2025
Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, California, United States of America.
The discovery of the endosymbiotic bacteria Wolbachia as an obligate symbiont of. filarial nematodes has led to antibiotic-based treatments for filarial diseases. While lab.
View Article and Find Full Text PDFPLoS Negl Trop Dis
September 2025
Environmental Health Group, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
Background: Chikungunya virus (CHIKV) is an arbovirus with a significant global public health burden. Delineating the specific contributions of individual behaviour, household, natural and built environment to CHIKV transmission is important for reducing risk in urban informal settlements but challenging due to their heterogeneous environments. The aim of this study was to quantify variation in CHIKV seroprevalence between and within four urban communities in a large Brazilian city, and identify the respective contributions of individual, household, and environmental factors for seropositivity.
View Article and Find Full Text PDFPLoS Negl Trop Dis
September 2025
Microbiota of Insect Vectors Group, Institut Pasteur de la Guyane, Cayenne, French Guiana.
Wolbachia, an endosymbiotic bacterium infecting a wide array of invertebrates, has gained attention for its potential in vector control. Its capacity to colonise host populations primarily relies on vertical transmission and reproductive manipulation in arthropods. This endosymbiont is additionally mutualistic in some hosts, across several Wolbachia supergroups; notably, in nematodes and, as recently demonstrated, in planthoppers and bedbugs, it functions as an essential nutritional symbiont by providing vitamins to its host.
View Article and Find Full Text PDF