A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Note: Space qualified solid state photon counting detector with reduced detection delay temperature drift. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The solid state photon counting detector is one of the key components of a measurement chain for laser time transfer ground to space. The photon counting approach significantly reduces systematic errors of the time transfer. The requirements put on the detection precision and the stability of laser time transfer are increasing and reaching sub-picosecond levels now. The temperature variations in the space environment limit the long term detection delay stability of detectors. Therefore, we have modified the existing space qualified solid state photon counter control circuit which compensates to a high degree the temperature variations of detection delay. We have optimized the detection delay change with operating temperature and reached the lowest temperature coefficient as low as 20 fs/K in a temperature range of +22 to +46 °C. The timing resolution and photon detection probability remained unchanged at the values of 40 ps FWHM and 30%, respectively. Thanks to the low temperature drift of the detector, the limiting precision of the laser time transfer chain characterized by time deviation is lower than 40 fs for 2000 s averaging time. These detection delay stability parameters are, to our knowledge, the best ever reported for any photon counting detector. This modification of the detector control circuit did not affect the space qualification of the device, which is expected to be used in future laser time transfer space missions.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5026457DOI Listing

Publication Analysis

Top Keywords

detection delay
20
time transfer
20
photon counting
16
laser time
16
solid state
12
state photon
12
counting detector
12
space qualified
8
qualified solid
8
temperature drift
8

Similar Publications