Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The accumulation of mutant aggregate-prone proteins is a hallmark of the majority of neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's diseases. Autophagy, a cytosolic bulk degradation system, is the major clearance pathway for several aggregate-prone proteins, such as mutant huntingtin. The autophagosome-associated protein LC3-II is a specific marker of autophagic flux within cells, whereas aggregate formation of mutant huntingtin represents a good readout for studying autophagy modulation. Here we describe the method of assessing autophagic flux using LC3-II western blotting and substrate clearance by expressing the N-terminal fragment of huntingtin (htt exon 1) containing an expanded polyglutamine tract in mammalian cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-7825-0_2 | DOI Listing |