98%
921
2 minutes
20
The phenology of long-distance migrations can influence individual fitness, moderate population dynamics and regulate the availability of ecosystem services to other trophic levels. Phenology varies within and among populations, and can be influenced by conditions individuals experience both prior to departure and encounter en route. Assessing how intrinsic and extrinsic factors (e.g., individual physical condition vs. environmental conditions) interact to influence variation in migratory phenologies across ecological scales is often limited due to logistical constraints associated with tracking large numbers of individuals from multiple populations simultaneously. We used two natural tags, DNA and otolith microstructure analysis, to estimate the relative influence of individual traits (life-history strategy, body size at departure and growth during migration), population-specific behaviours and interannual variability on the phenology of marine migrations in juvenile sockeye salmon Oncorhynchus nerka. We show that the timing and duration of juvenile sockeye salmon migrations were correlated with both life-history strategy and body size, while migration duration was also correlated with departure timing and growth rates during migration. Even after accounting for the effect of individual traits, several populations exhibited distinct migration phenologies. Finally, we observed substantial interannual and residual variation, suggesting stochastic environmental conditions moderate the influence of carry-over effects that develop prior to departure, as well as population-specific strategies. Migratory phenologies are shaped by complex interactions between drivers acting at multiple ecological and temporal scales. Given evidence that intraspecific diversity can stabilize ecological systems, conservation efforts should seek to maintain migratory variation among populations and preserve locally adapted phenotypes; however, variation within populations, which may buffer systems from environmental stochasticity, should also be regularly assessed and preserved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1365-2656.12852 | DOI Listing |
NAR Genom Bioinform
September 2025
Centre for Integrative Biology and Systems Medicine (IBSE), Wadhwani School of Data Science and AI, Indian Institute of Technology (IIT) Madras, Chennai 600036, India.
Genome graphs provide a powerful reference structure for representing genetic diversity. Their structure emphasizes the polymorphic regions in a collection of genomes, enabling network-based comparisons of population-level variation. However, current tools are limited in their ability to quantify and compare structural features across large genome graphs.
View Article and Find Full Text PDFMol Ecol
September 2025
Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
The class Hexacorallia, encompassing stony corals and sea anemones, plays a critical role in marine ecosystems. Coral bleaching, the disruption of the symbiosis between stony corals and zooxanthellate algae, is driven by seawater warming and further exacerbated by pathogenic microbes. However, how pathogens, especially viruses, contribute to accelerated bleaching remains poorly understood.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia.
Introduction: Satellite DNA (satDNA) is a rapidly evolving component of plant genomes, typically found in (peri)centromeric, (sub)telomeric, and other heterochromatic regions. Due to their variability and species- or population-specific distribution, satDNA serves as valuable cytogenetic markers for studying chromosomal rearrangements and karyotype evolution among closely related species. Previous studies have identified species-specific subtelomeric repeats CS-1 in , HSR1 in , and HJSR in .
View Article and Find Full Text PDFFASEB J
September 2025
Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, Missouri, USA.
Ovarian steroid hormones-estrogen and progesterone-play a central role in regulating epithelial-stromal interactions in the uterus. These interactions are critical for uterine function, including endometrial receptivity, implantation, and decidualization. These interactions involve complex signaling crosstalk between the uterine epithelium and the underlying stroma, with dynamic cell population-specific roles.
View Article and Find Full Text PDFNeuropsychiatr Dis Treat
August 2025
Department of Mood Disorders, Qingdao Mental Health Center, Qingdao, Shandong, People's Republic of China.
Purpose: This pioneering study aimed to explore the associations between the A-kinase anchoring protein 11 () gene and bipolar disorder (BD) in a Chinese population. We sought to replicate findings from European populations regarding ultra-rare protein-truncating variants (PTVs) within exon 8 of and identify any novel rare mutations linked to Chinese BD patients.
Methods: We conducted a case-control association study, including a cohort of 284 Chinese BD patients, with the control group comprising 10,588 individuals from the China Metabolic Analytics Project (ChinaMAP) database.