A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A Predictive Spatial Distribution Framework for Filovirus-Infected Bats. | LitMetric

A Predictive Spatial Distribution Framework for Filovirus-Infected Bats.

Sci Rep

Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA.

Published: May 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tools with predictive capabilities in regards of filovirus outbreaks are mainly anthropocentric and have disregarded the ecological dimension of the problem. Here we contribute to shift the current paradigm by studying the dynamics of the putative main zoonotic niche of filoviruses, bats, and its link to environmental drivers. We propose a framework that combines data analysis, modeling, and the evaluation of sources of variability. We implement a regression analysis using factual data to correlate environmental parameters and the presence of bats to find the distribution of resources. The information inferred by the regression is fed into a compartmental model that describes the infection state. We also account for the lack of knowledge of some parameters using a sampling/averaging technique. As a result we estimate the spatio-temporal densities of bats. Importantly, we show that our approach is able to predict where and when an outbreak is likely to appear when tested against recent epidemic data in the context of Ebola. Our framework highlights the importance of considering the feedback between the ecology and the environment in zoonotic models and sheds light on the mechanisms to propagate filoviruses geographically. We expect that our methodology can help to design prevention policies and be used as a predictive tool in the context of zoonotic diseases associated to filoviruses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5964142PMC
http://dx.doi.org/10.1038/s41598-018-26074-4DOI Listing

Publication Analysis

Top Keywords

predictive spatial
4
spatial distribution
4
distribution framework
4
framework filovirus-infected
4
bats
4
filovirus-infected bats
4
bats tools
4
tools predictive
4
predictive capabilities
4
capabilities filovirus
4

Similar Publications